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I. Summary of Results

This chapter presents an overview of the SIFT computer system and its development.

Successive sections describe technical goals, design approaches and solutions,

development history and significant technical results.

A. GOALS OF THE SIFT DEVELOPMENT

This section describes the goals of the SIFT development and the primary criteria that

_uided its design.

1. Introduction

SIFT (Software-Implemented Fault Tolerance) is an experimental computer system

designed to provide extremely reliable computing service for critical functions in

advanced air transports. An example of such critical use is the control of dynamically

unstable aircraft, designed for high energy efficiency. The SIFT design is intended to

assure correct execution of aircraft control programs despite the occurrence of computer

hardware malfunctions. The design does not address other sources of system

unreliability, such as incorrect flight-control programs and faulty sensors, actuators, and

communication channels, but techniques for program correctness were employed that

have significant potential for the goal of highly reliable aircraft software.

• The SIFT development was intended to apply techniques of fault-tolerant computer

architecture to a very demanding aircraft application. Early in the effort, it became

clear that the problem of estimating the reliability of machines designed for this

application was beyond the state of the art, due to (1) the extremely low acceptable

probability of system failure, which made life-testing totally impractical, and (2} the

potentially high complexity of fault-tolerant systems, which made logical analysis very

difficult. These characteristics will inevitably cast doubt on any reliability predictions

for fault-tolerant systems, because the model used for the prediction either might not

truly represent the real system, or it might be so highly simplified that the important

parameters might be effectively unmeasurable. For this reason, project goals were

extended to include development of new techniques for analyzing the reliability of fault-

tolerant computer systems.

Fortunately, recent results in the theory and practice of program verification indicated

that it is possible to design a fault-tolerant system to be provable, i.e., so that one can

prove mathematically that the design is consistent with its formal specification.

Applying this technique, one could verify that a given reliability model truly represents a

proposed computer design. The use of program verification techniques also happened to

be well suited to the architecture's software-intensive approach, which was selected for

other reasons, such as compatibility with maximum use of standard hardware.
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In the courseof the work, techniquesfor verification of fault-tolerant computer designs
were developedand successfullyapplied. We are encouragedto believe that the goal of
designing provably fault-tolerant computer systems is achievable, and we submit that

these techniques constitute at least as significant a contribution to reliable system

technology as the SIFT architecture itself.

2. Design Criteria

The performance goals for SIFT were chosen to reflect the computing needs of advanced

air transports. There were two main assumptions:

(1) Centralizing aircraft computing functions will help to avoid the wasteful

addition of separate computers for each new increase in aircraft functionality,
and

(2)Advanced air transports will require new levels of computing performance,

e.g., for stability augmentation in fuel-efficient airframes, and new levels of

reliability, resulting from the use of computers to control flight-critical
functions.

The first assumption implies that the computer system should have good general-purpose

characteristics and that it be capable of serving multiple aircraft processes concurrently.

We note the recent trend towards a proliferation of computers on aircraft, in the form of

micro-computers, embedded in aircraft subsystems. These tend to be cost-effective, but

problems of resource sharing, system fault tolerance, and software compatibility have not

been solved and represent an obstacle to system effectiveness.

The second assumption, which concerns both performance and reliability, had several

consequences. In order to achieve adequate performance, the computer system must

have relatively high computing speed and large memory capacity, compared with current

single-purpose aircraft computers. In the initial feasibility study [25], data were gathered

on possible future applications in order to determine ranges of future requirements for

computer speed and memory capacity. The reliability goal was not so readily

determined. The general guideline of the Federal Aviation Administration is that a

catastrophic failure should be extremely unlikely, but this objective is not given a

quantitative form. Based on a review of the literature on socially accepted risk levels,

and informal discussions with NASA personnel familiar with industry practice, the

reliability goal was taken as the requirement that the computer system should have a

probability of failing to meet its critical computational requirements during a ten-hour

flight of less than 109. This level of reliability is unprecedented, and represents a severe

technological challenge. It was noted, however, that not all aircraft computations would

require the same level of reliability.

While reliability for critical functions was the paramount objective, several other

reliability properties were seen to have economic significan::e. First, any improvement in
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the computer system's capability for self-test and diagnosis, a natural side-benefit of

fault-tolerant design, would be beneficial in reducing the cost of maintenance. Second, it

is very advantageous to be able to dispatch an aircraft following a landing in a multi-leg

journey, even though some failure may have occurred (of course, the reliability of the

total flight must meet requirements based on total flight duration}. Numerical goals for

mean-time-to-repair and dispatch probability were not established.

To summarize, the SIFT computer system was developed to test the feasibility of using

modern techniques for fault-tolerant design to meet the severe reliability and

performance requirements of advanced air transports. The technical challenge implied

by this goal was that several necessary techniques of design and analysis had not

previously been brought together in a practical demonstration vehicle of the given scale

of performance and reliability.

B. DESIGN APPROACHES AND SOLUTIONS

General aspects of the SIFT system will be discussed in nine sections: (1) basic

redundancy issues, {2} reconfiguration, (3} the SIFT approach, {4} a hierarchical design

view, {5} verification and testing, (6} proof of correctness, {7} software methodology, (8}

operational support equipment, and (9} test environment.

1. Basic Redundancy Issues

In considering the goal of correct computation with a system failure rate of less than

1_ 10 per hour (15 9 per ten hours}, the first question is whether this rate can be achieved

by a conventionally designed computer, using the highest standards of construction.

Given the need for several hundred integrated-circuit devices (at current integration

levels}, and a device failure rate of 15 7 permanent failures per hour for quality devices,

this approach is easily seen to be hopeless, even without considering transient device
failures and failures due to interconnections, power supplies, and other system

components. The use of redundancy is clearly essential, but the proper form of

redundancy is by no means obvious, since, in poor designs, the increased failure rate due

to the added components may outweigh the benefits derived from the added fault-

tolerant functionality.

Given the decision to use redundancy to improve reliability, one of the most fundamental

issues is the choice of the level of complexity of the basic unit of redundancy. For

example, should redundancy be applied at the level of a gate, a register, a central

processing unit, or an entire computer? In general, application of redundancy requires

the introduction of additional components, e.g., for selecting or combining redundant

elements. Since these additional components introduce new sources of failures, it is

necessary to balance the loss of resources (under error conditions} that results from using

too large a unit of redundancy against the introduction of error resulting from the use of

too small a unit of redundancy (which tends to increase the total level of redundancy}.
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In our preliminary study of alternatives, we recognized a strong trend toward increased

device complexity in computer technology,. In order to be able to keep our design

scheme relevant to several future technology stages, it was decided to take an entire

computer (CPU, memory, I/O, etc.) as the major unit of redundancy. The same choice

has been made in numerous subsequent research and development efforts.

2. Reconfiguratlon

In considering possible forms of redundancy, perhaps the simplest is the use of multiple

identical channels, with some form of error masking at the system output interface. A

typical form of error masking is majority voting, e.g., in which the output is determined

by two-out-of-three, or three-out-of-five agreement (in general, for n channels, the output

is defined as equal to the value presented identically by m or more channels, where m is

the next integer greater than n/2, and is undefined if there is no such value). In this

simple scheme, the system will fail when half the number of channels or more have

failed. The fault tolerance capability of this scheme can be improved, at the cost of

increased complexity, if faulty channels are removed from the system when they are

recognized. For example, a five channel majority-voting system can degrade in steps so

as to tolerate the loss of a total of three channels, since at each step, a single faulty

processor will be out-voted by at least two nonfaulty processors; without the recognition

and removal of faulty channels, a given channel system could survive the loss of only two

channels. This advantage will be realized only if the reconfiguration scheme can be

implemented with low complexity. The SIFT program essentially was based on the

belief that the potential benefits of the recognition-and-removal scheme (more

conventionally called reconfiguration) could be achieved in practice.

The basic paradigm for the reconfiguration approach is as follows:

• Fault Isolation: Partition and interconnect system elements so as to minimize

the propagation of faults in the system.

• Error Masking: Combine the results of redundant computations in a way

that prevents erroneous results from appearing at the system output.

• Fault Detection and Diagnosis: Detect evidence of a fault, and identify the

responsible unit of redundancy.

• Reconfiguration: Reconfigure the system so that the faulty unit is logically

removed from the set of computations that may affect system output.

• Restoration: Restore system data to a proper state, as needed.

This is essentially the paradigm for fault tolerance used in SIFT, in the FTMP computer

of C.S. Draper Laboratory, and in other experimental machines (notably the pioneering

JPL-STAR computer of the late 1960s).



3. The SIFT Approach

The point of departure for the SIFT development was in the approach used to

implement the paradigm in contemporary hardware and software. The chosen approach

was motivated by the following views:

Maximum Use of Standard Hardware: Since component reliability tends to

increase with maturity of production, increased intrinsic reliability should

result from the use of standard components at all system levels.

Minimum Dependency on Shared Facilities: Facilities such as power

supplies, clocks and communication lines, which are usually shared by

multiple elements in conventional computers, are points of vulnerability, and

should either be replicated and not shared, or should be specially protected.

• High-Level Programming: Use of high-level programming languages in

implementing system software is preferred, in order to enhance reliability and

modifiability.

• Design for Provability: The design should be kept very simple, in order to

allow design verification using current methods of proof of correctness.

These views strongly motivated the design of the SIFT architecture, which is based on

the following primary features:

• The unit of hardware redundancy and reconfiguration is a whole computer,

of conventional design.

The only shared facilities are a multiple-path intercomputer communication

network and a fault-tolerant primary power supply; clocks, secondary power

supplies and aircraft I/O channels are provided in each computer.

• The primary function for fault detection and fault masking is majority

voting, applied to task outputs.

All steps of the fault-tolerance paradigm are implemented in programs

written in a high-level programming language; the hardware functions are

limited to computation, inter-processor communication, input-output and

fault isolation (detailed descriptions of the hardware facilities that support

these functions are presented in Chapter H}.

Important secondary concepts in SIFT deal with multitasking, redundancy management,

reconfiguration, and latent-fault detection. These are addressed as follows:

• Multitasking is provided by preassigning tasks to time segments in a frame-

structured schedule.



s Flexible redundancy management is provided by tables that define the
assignmentof tasks to processors.

• Reconfiguration is provided by modifying the task assignmenttables.

Reconfignration management is provided by a replicated task {called the
Global Executive), whosestate data are the task assignmenttable; the effect
is to provide exactly the same treatment and protection to the
reconfiguration function as to all other software functions.

• Latent fault-detection is accomplishedby a continuous background task that
exercisesthe hardware in a nonoutput mode.

There are other functions of a supporting nature, i.e., interprocessor communication,

processor synchronization, and consistent replication of data, that might logically be

considered as tertiary features, since they do not contribute to system fault tolerance.

Nevertheless, they have a crucial system role and were indeed the source of considerable

difficulty in design and debugging. Briefly, the technical issues for these functions are as
follows:

• lnterprocessor Communication:

SIFT was originally designed to use a multiple-bus network; interprocessor

paths within the network would be constructed at the demand of an

individual processor, whenever it needs data that are located in another

processor. In this scheme {described in [34]), the multiple busses are under

continuous contention, and, since the processor demands are not precisely

synchronized, each entry of a datum to each of the three or five copies of a

program creates a separate service call on the bus system.

Unfortunately, some worst-case conditions in busses and processors Could

cause abnormally long delays in resolving contentions for bus service.

Providing adequate time to ensure safe communication in the event that

these conditions occur would reduce bus data rate to an unacceptable level.

This problem led to a change of interconnection schemes and protocols.

The resulting design employs nonshared links among all processor pairs and

calls for data to be transferred at the initiative of any originator of data, on a

broadcast basis. The result is a much higher data-transfer rate than for the

demand scheme, even without abnormal fault conditions.

• Processor Synchronization:

Since voting in SIFT is performed only on task outputs, synchronization need

only be accomplished on a task basis. In order to reduce common-mode
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failure, each SIFT processorhas its own clock. The processors may be

synchronized via adjustments to a time-of-day register, which is accessible by

the CPU, and for the intended applications, only relative synchronization

among the processors is needed, A new algorithm was developed to

synchronize multiple processors in the presence of both clock drifts and clock

failures.

In developing the algorithm, a certain anomalous behavior was seen to be

possible, i.e., a given processor time might be seen as higher or lower than its

time value by other processors (due to transmission ambiguities), with the

result that slow processors might be adjusted to go yet slower, and fast

processors to go yet faster. The algorithm developed deals satisfactorily with

this anomaly.

• Consistent Replication:

In SIFT, fault detection is accomplished by comparing the outputs of

supposedly identical results of redundant computations at the time they are

presented for voting. This is a valid test only if those processes received

identical inputs. Most data in SIFT are distributed in triples or quintuples,

in which a single error is always correctly interpretable. In certain cases,

only a single version of data is present, e.g., at an input from a sensor. In

such cases, identical copies of the data should be distributed as inputs to all

redundant processes. This operation has the possible anomaly (associated

with several realistic fault modes} that two processors may obtain different

values, which may confuse subsequent fault-detection operations. For a

single fault of this kind, at least four processors are required. A special

algorithm, called Interactive Consistency, was developed and generalized for

an arbitrary number of faults.

Detailed descriptions of the software facilities that support these functions are given in

Chapter HI.

4. A Hierarchical Design View

The several design features discussed may be viewed in a hierarchical framework, as in

Figure I-1 (a similar hierarchical view will be presented in discussing the validation of the

SIFT reliability model}. In this presentation, assumptions are made at each level that

are realized by functions at the lower levels. The application level is the view defined by

the aircraft system engineer; it deals with aircraft functions, such as aircraft state

sensing, control and actuation, as implemented in computer programs. The computer

system engineer seeks the view of the second level, in which an ideal computer executes,

without error, programs that implement the functions of the application level.



APPLICATION

FILTERING HANALYTICAL

REDUNDANCY HCONTROL HACTUATION

IDEAL COMPUTER

_ COLLECTION COMPUTATION
DISTRIBUTION

I

FAULT-MA8KING

CONSISTENT

REPLICATION

_ PROCESSING

PROCESS

VOTING

In I _IOUTPUTI _

I -I VOTING

7-
I
1
I

RECONFIGURATION I

CONFIGURATION

CONTROL

t

PROCESSING VOTING j

RESOURCES ERROR
DETECTION

I i

HARDWARE INTEGRITY

FAULT-TOLERANT

POWER SUPPLY
_ SYNCHRONIZATION [_

+ ! e

I ,NTERPROCESSCOMMUNICATIONI

FIGURE 1-1 SIFT VIRTUAL-MACHINE HIERARCHY



9

At the fault masking level, redundant processors receive consistently replicated data

and use voting to mask errors resulting from processor faults, in order to give the effect

of the ideal computer assumed at the higher level. At the reconfiguration level, faulty

processors are eliminated from the voting process in order to avoid the compromising of

the voting function at the higher level that would result from multiple faults.

Finally, at the hardware integrity level, basic functions such as fault-tolerant power

supply, processor synchronization, and interprocessor communication are provided to

allow safe, uninterrupted communication among multiple processors.

SIFT may thus be seen as a basically fully-distributed computing system, which, by

virtue of system software for synchronization and fault tolerance, acts as a single reliable

computer for aircraft applications.

5. Verification and Testing

As mentioned previously, reliability estimation for extremely reliable fault-tolerant

systems is not a well-developed art, due to the impracticality of life testing and the

complexity of logical analysis. A strategy was developed for the reliability analysis of

SIFT that had two main parts:

(1) Proof that the design was a true implementation of an abstract reliability

model, and

(2) Measurement of reliability performance factors necessary to evaluate the

model.

This strategy is illustrated schematically in Figure I-2

The reliability model used for SIFT is a Markov model of the processor set, in which

each state represents some combination of good, faulty-active and faulty-inactive

(reconfigured) processors. Various state transitions correspond to the occurrence of

random hardware failures and to actions carried out by the system to accommodate

those failures. The model thus constitutes a very high-level description of SIFT

behavior. A simplified version, representing permanent failure modes only, is illustrated

in Figure I-3 (the full model described in Chapter IV reflects transient behavior).

A_s shown in the scheme of Figure I-2, the design of the system is examined for

consistency with the reliability model in order to verify correctness of the design. In the

SIFT development, that examination, which attempts to establish that consistency with

mathematical rigor, constructs a logical chain that proceeds from a high-level system

model (composed of an external performance model and a reliability model}, down

through formal specifications and into the programs that comprise the executive system.

For completeness, proof of the validity of assumptions about the hardware functionality

would also be necessary.
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Given a validated reliability model, use of it for prediction requires quantitative

estimates of its state transition rates. Since it is impractical to derive these analytically,

an experimental approach is proposed. Tests would be conducted on a physical machine,

in which faults are simulated or injected (nondestructively). The results would be

analyzed statistically and estimates of transition rates are derived.

The result would be a reliability prediction based on a validated model of the real

system. Detailed descriptions of the model and of its application are given in Chapter

IV. A detailed discussion of the proposed testing plan is given in Appendix A.

6. Proof Of Correctness

Given the major role of software in SIFT, methods for proving program correctness can

be used to verify a major portion of the SIFT design. As mentioned in the preceding

section, the approach most suitable to SIFT is to generate a hierarchy of abstract models

that progressively, through continuously increasing detail, form a logical bridge between

the Markov and input-output models on the one hand, and a set of detailed specifications

of the executive software on the other. The program code is then proven correct with

respect to the specifications. The model hierarchy was developed specially for SIFT,

while the proof of correctness work, and the mechanical tools used, were developed on a

separate NASA contract, NAS1-15528. A detailed description of the proof analysis is

given in Chapter IV.

7. Software Methodology

The commitment to the use of software for crucial fault-tolerant functions opened the

possibility of using modern Software-design methods to support reliable design and ease

of understanding and proof. The SIFT software development benefited from the

availability of HDM (Hierarchical Development Methodology), a mathematically formal

approach to structured programming that was developed at SRI in the context of

research on secure operating systems. In HDM, a system developer uses a specification

language (SPECIAL} to give abstract definitions of module interfaces, and to define

hierarchies of modules. HDM is supported by several tools for construction and

verification.

Considerable effort was applied to keep the executive software simple and efficient (it

comprises about 800 lines of code). The design is very modular, and, to some extent,
hierarchical. The external behavior of each module is specified in the SPECIAL

Specification language. (A summary of the language is given in Appendix C and the

actual specifications are given in Appendix D). These specifications provide an

• unambiguous definition of the modules and give a firm formal basis for proving both that

the design is consistent with the high level model of SIFT functionality and that the code

is consistent with the specification. The software tools used to perform these proofs, the

STP system, were constructed without a parser for the SPECIAL language. Thus, for



12

the proofs, the specifications were expressedin the LISP-like internal representation of
the STP system. The moduleswere implemented mostly in Pascal; about 20% is written
in assemblylanguage, in order to deal with machine functions, primarily those dealing
with interprocessorcommunication.

SIFT is one of the first two usesof HDM for an operational system(the other is KSOS, a

secure operating system developed by Ford Aerospace Systems). Aside from its use in

clarifying software function, it helped to focus programmer attention on design issues,

thus helping to avoid both conceptual system design errors and coding errors.

8. Operational Support Equipment

The SIFT power supply system was designed as a two-level system, with conventional

secondary power conditioning in each computer, and a central supply for primary power.

The latter clearly must employ redundancy due to its uniqueness and criticality. The

need for a special design provided the opportunity to include tolerance for partial loss of

aircraft primary power. A common configuration for aircraft power is to have four

power busses, in which one or two busses may fail, with significant frequency: The

design for the SIFT primary power supply tolerates any combination of up to two

failures among the four internal power modules and the four input lines..an additional

requirement on the power supply was that certain levels of power should be delivered

during total interruption of input power under two circumstances: (1) for accidental

interruptions during flight of several minutes, full power should be delivered to all

processors, and (2) for planned or accidental interruptions on the ground of up to 24

hours, power should be provided to the memory units of all processors. The amount of

power in the latter mode was kept to a relatively low value by the use of CMOS memory

devices. Design of the SIFT fault-tolerant power supply was a significant engineering

effort, but it did not require development of new design principles. A detailed

description of the power supply design is given in Chapter II.

A second item of operational support equipment was the aircraft input-output channel.

In anticipation of future test environments, it was decided to use the Military Standard

1553A protocol, which provides for bidirectional communication (in this case, with both

sensors and actuators). In the absence of commercial products for this function at the

time, a special design was developed.

Due to the great variety of possible requirements and equipments, the SIFT development

program did not address the problem of communicating redundant output results to

redundant-input aircraft actuators. Consequently, each processor is provided with an

independent 1553A channel, with the intention that, in a given system, some external

means will be employed to combine the multiple outputs, e.g., by voting at the

actuators, using available information about which processors are deemed to be fault-
free.
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9. Test Environment

Facilities for testing are provided by a general-purpose host computer, which serves both

for program loading and for exercising and observing the SIFT computer system's fault-

tolerant behavior. These facilities have the following general characteristics:

• Compiling: A Pascal compiler was developed for the SIFT cpu (a Bendix

BD930) by Bendix Corporation. The complexity of the compiler made it

unfeasible to operate it in the selected host computer (a Data General

Eclipse}, so it was built to run on the large research computer available at

SRI (a DEC KL-10). A link was provided to transfer compiled code between

the KL-10 and the Eclipse computer.

• Program Transfer and Observation: Special circuits were provided for

communication between SIFT and the host computer both for the loading of

programs and for two-way communication between the test computer and

arbitrarily selectable SIFT registers. The latter facilities provide a powerful

test capability, enabling the experimenter to inject erroneous data at any

time and place in the computation, and to observe the consequential

behavior.

• Aircraft Simulation: In order to test the capability of SIFT to meet its

computational requirements under fault conditions, means were provided to

have SIFT carry out simulated aircraft computations. For this purpose,

communication was provided between the host computer and the 1553A

input-output channels of each SIFT computer. This took the form of a

specially designed multiplexer that provided two-way communication

between the test computer memory and the concurrently operating I-O

channels. A particular aircraft simulation was designed, based on the

Microwave Landing System demonstration conducted by Bendix. Equations

of motion of the USAF T39 aircraft were programmed for simulation of

aircraft motion within the test computer, and a simple flight-control program

was written for execution in SIFT. These facilities make it possible to carry

out fault-injection experiments within the context of a simulated flight-

control operation.

The test environment described is somewhat fragmented and limited in power and

flexibility, but it does provide basic facilities for program development, performance

measurements, and fault-injection experimentation. Considerably greater power will be

required to carry out test and evaluation measurements to the depth needed for future

design practice.
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C. DEVELOPMENT HISTORY

This section summarizes the history of the SIFT development, including the several

stages of definition, design, construction, and integration, and the contributions of the

several participating organizations.

The SIFT development proceeded in the following stages:

Preliminary Study (1972). SRI studied possible aircraft requirements and computer

technologies for the 1980-1990 time period [25]. Using available literature and the results

of earlier SRI studies ( [5, 9, 10]), several architectures were distinguished that had the

potential for meeting these requirements and making appropriate use of expected

technology [32]. The reliability requirement of l{)gper hour was distinguished and large-

scale-integrated semiconductor technology was recognized as the most promising

technology. Three architectures were recommended: SIFT (conceived during the study},

a published scheme by A. Hopkins [11] (later developed by C. S. Draper Laboratory as

the FTMP computer}, and a scheme named Bus Checker System (conceived during the
study).

Feasibility Study (1075). NASA initiated two parallel computer developments: one,

based on the SIFT concept, emphasized software implementation of fault-tolerance logic,

and the other, based on the Hopkins scheme, emphasized hardware implementation.

Both developments assumed the same computational and reliability objectives. SRI

undertook a study of architecture, software design, and validation methodology for the

SIFT concept [35]. The recent development of program-proving techniques led to the

goal of a formally provable design. A strategy for testing was also developed.

Subcontractor Selection (1976). NASA authorized a program of machine

development, based on the results of the SIFT feasibility study. SRI invited major

manufacturers of aircraft computers to bid on the design and construction of a SIFT-

based architecture. Several valid bids were received. The bid by Bendix Flight Systems
Division was selected.

System Development (1977). Detailed engineering design was undertaken by Bendix

for the SIFT computer, the test environment, and the software development system.

SRI undertook the design of the fault-tolerant software system, including the use of the

HDM specification methodology. SRI and Bendix jointly examined various existing

flight-control programs that might provide realistic demonstration of an aircraft

application under simulated fault conditions.

A design was proposed by Bendix and approved by SRI. The design implemented the

original SRI concept of demand-initiated data transfer over a multiple shared-bus

interprocessor network. Midway through construction, SRI discovered a weakness in the

demand-initiated bus design and recommended a change to a broadcast-bus design. The
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change was approved by NASA and carried out by Bendix. (A discussion of the

technical issues is given in Chapter II).

Several subsystems were developed concurrently (on individual subcontracts): SCI

Incorporated developed the interface between the SIFT processor 1553A channels and

the test computer; Bendix developed (at its own expense) a Pascal-BD930 compiler that

was made available to the project; and August Systems Incorporated designed and

developed a fault-tolerant power supply to serve as the central supply of primary power.

Work on formal verification of the SIFT design was conducted using verification tools

developed in other SRI work. Initially the work employed a program-proving system

built by Robert Boyer and J Moore [1]. The final effort employed a deductive system

built by Robert Shostak [28]. This work continued through the end of the project, and is

continuing under separate NASA support.

System Integration (1980). The several major and minor system hardware

components were assembled and integrated by Bendix. Concurrently, SRI assembled

software components, including the Bendix Pascal compiler, the SIFT executive, a

demonstration flight-control program for SIFT written by SRI on the basis of the Bendix

Microwave Landing System (MLS) demonstration (using the USAF T-39 aircraft}, and a

T-39 aircraft simulator for the test computer, written by SRI on the basis of a dynamic

model supplied by Bendix. The SRI integration effort employed a DEC-KL time-shared

computer.

The SIFT hardware system and test environment were shipped to SRI for software

integration and testing. The integration proved to be very difficult. Contributing was

the fact that full integration of the software system itself had to be done on the SIFT

processors, due to the impracticality of simulating asynchronous multiprocessor activity

on the KL research computer. Unfortunately, there were several very subtle hardware

faults that evaded prior discovery at the hardware integration step, and these faults

seriously confused the software-hardware integration effort. In retrospect, it is clear that

inadequate facilities were provided in the SIFT design to support debuggingl

After a considerable expenditure of effort by SRI, aided by Bendix engineers, NASA

recommended the organization of a wTiger Team w effort to attempt to achieve a

correctly working system. A team was composed of several members of the SRI project,

two of the original Bendix designers, and Mr. John Wensley, of August Systems, Inc., the

original designer of the SIFT system. The team worked intensively for five weeks, and

was completely successful in uncovering and solving the evident hardware and software

problems. The result was a system that carried out all intended SIFT fault-tolerance

functions within its test environment, including the demonstration program derived from

the T39 Microwave Landing System.

Unfortunately, insufficient effort was available to carry out the planned program of
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systematic test-injection and fault-response observation. During this period, SRI
achieved a successful automatic proof of correctness of the major chain of fault
tolerance, from a high-level specification of fault-masking to detailed Pascal code. Part
of the effort for this result was supported on a companion project at SRI on System
PerformanceProving (Contract NAS1-15528).

D. RESULTS

The SIFT computer has been built, debugged,operated in all its intended modes,and
delivered to NASA Langley ResearchCenter for inclusion in its AIRLAB facility for the

• testing of advanced aircraft electronic systems. The analysis of its reliability falls short

of the intended goals, in that, due to the greater than expected debugging effort,

insufficient resources remained to carry out the scheduled fault injection and recovery

tests. Goals for the proof of correctness of design also were not completely realized, but

the major proof chain was successfully verified by an automatic theorem prover.

We offer the following view of the achievements and shortcomings Of the SIFT

development.

AC, HIEVEMENTS

A new architecture for aircraft computers intended for flight-critical

applications has been demonstrated, and has achieved acceptance as a
contribution to the state of the art.

The use of program verification techniques for verifying the correctness of

design for fault-tolerant computers was developed and demonstrated

successfully.

Several fundamental problems in fault-tolerant computer design were

uncovered and solved with full generality, specifically,

Synchronization of fault-prone clocks

f •

Consistent replication of data among fault-prone machines.

A result that apparently has not been known to many designers of fault-

tolerant computer systems is that three clocks are insufficient for correct

clock synchronization in the presence of faults unless special algorithms that

affix digital signatures to messages are used.

Technical results have been published in professional journals and reported in

numerous technical conferences [4, 6, 7, 8, 20, 21, 23, 24, 30, 31, 33, 34].

SIFT is now widely known in the technical community.
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• Many technical assumptions on which the SIFT architecture was based

appear to have been validated, e.g.,

The use of a whole computer as the unit of redundancy was very

consistent with the recent development of single-chip computers,

The use of software to implement fault tolerance algorithms is

compatible with performance requirements, although some functions,

such as voting, would profit from implementation in microcode or

equivalent, and

Other benefits of software implementation were realized, including ease

of design modification and portability.

• The computer and its test environment were successfully built, demonstrated,

and delivered.

SIIORTCOMINGS

• The amount of effort required to complete the development and integration

exceeded expectations.

• The planned fault-injection testing was not conducted (but the basic

functions required for such testing were demonstrated).

• The flight-control demonstration programs were much simpler than hoped

(due to the effort it would have required to rewrite the real flight-control

programs that were available).

• Execution of the demonstration programs is slower than real-time (due to

insufficient power in the host computer)

• A major redesign was required for the interprocessor communication

subsystem (due to certain critical worst-case conditions that were overlooked

in the original design)

• Insufficient facilities were provided in the design to aid in debugging the

prototype. Examples of useful facilities are: some use of error-detecting codes

(not for final use, but for debugging and maintenance checkout), special

registers for observing internal state, and facilities for forcing the

synchronization of clocks during checkout of higher-level functions.
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H. SIFT Hardware

This chapter describes the hardware design of the SIFT computer system and the SIFT

fault-tolerant power supply. SIFT computer system hardware provides computation,

inter-processor data transfer, and fault isolation, but not fault tolerance as such. The

latter function is provided by software functions, and is described in the following

chapter:

A. SIFT HARDWARE DESIGN

1. Introduction

This section describes the hardware architecture of the SIFT computing system*. The

system was designed and built by Bendix Flight Systems Division under subcontract to

SRI International for NASA-Langiey Research Center.

Midway in the system development, certain worst, case conditions were discovered in the

interprocessor communication subsystem that would have required substantial limitations
on the rate of data transfer for safe operation. A new design was, therefore, developed

and successfully implemented. A comparison of the two designs is given in the final

paragraphs of this section.

2. General Structure

SIFT employs a multiprocessor architecture that achieves fault isolation by physical and

electrical separation among processing units, and fault tolerance by replicating

computing tasks among the units. Error detection and system reconfignration are

performed by software to maintain the operational integrity of the computer system.

The increased power of multiprocessor architectures can be nullified by an

interconnecting bus system that is slowed by contention for port or bus services [9]. The

SIFT system is a multiprocessor computer array that utilizes dedicated ports and busses

for all interprocessor data transmissions, thus avoiding delays due to contention that

occur in shared-bus systems.

Computing is carried out by high-speed Bendix BDX-930 processors. Each processor

main memory contains 30K words; each word is 16 bits long. This memory holds the

SIFT executive program and the application programs. Each processor communicates

with the other processors via dedicated, buffered bit-serial busses. Synchronization task

*The text is taken, with slight revision, from a report prepared by K. Moses of Bendix, Flight Systems
Division.
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dispatching and fault tolerance are achievedby the cooperative action of the individual
executiveprograms.

3. Intereonneetion System

The basic structure of the SIFT computer system is designed to drastically reduce

interprocessor communication delays. A variable number of processors (up to 8 in the

current prototype) are connected to each other by dedicated links, so that each processor

can immediately broadcast the results of its computations to all the other processors
(Figure H-I).

A block diagram of the SIFT computer system is shown in Figure II-2. The

computations and broadcasts are carried out in an iterative sequence for a real-time

avionics application. Computations carried out by the BDX-930 processor are

temporarily stored in the scratchpad memory data file. This data file can be accessed by
the broadcast shift register, receiver, 1553 data link, and the CPU in that order of

priority. This sequence has three phases, which control the activities of the system
components.

. Load Phase--The processor computes its assigned tasks, loads resultant data

into its local data file, loads the associated destination address into its

transaction file, and loads the starting transaction address into the

transaction pointer to start the broadcast. The broadcast phase of operation

is then initiated. It should be noted here that the broadcast and receiver

phases (described below) function independently of the processors and do not

detract from the power or speed of the CPUs that make up the SIFT
computer system.

. Broadcast Phase--The broadcast sequencer broadcasts a data word (from

data file) along with the associated destination address (from transaction file)

at a maximum rate of one data word every fifteen ps. This rate was selected

to ensure that the receiver had sufficient time to detect the data word and

store it in its local data file. The broadcast sequence continues until end-of-

file (EOF) is reached in the transaction file. The control register shown in

II-2 contains the EOF indicator. The flow diagram for this sequence of
events is shown in Figure II-3.

End-of-file (EOF) is reset by loading the transaction pointer with the starting

address. The delay timer is then started. It times out in 14.75 _usec, resulting

in a transmission rate of up to one data word approximately every fifteen ps.

A 16-bit data file word (Figure II-4) is then loaded into the transmitter, and

its receipt is acknowledged.

The 25-bit serial word is then concurrently broadcast to all other processors

in the system. Following transmittal acknowledgment and two NOP's, the



I SENSORS I

AND

ACTUATORS

1553 JI/O BUS

f

I NUMBER 1 ]

PROCESSOR

AND MEMORY

L...l ]...,

I SENSORSANDACTUATORS

1553 II/O BUS

r NUMBER 2

PROCESSOR

AND MEMORY

1
I BROAOCAST1 '
TRANSMIrrERSlI

_ Ioe

BROADCAST

RECEIVERS

l'"]

SERIAL BUS STRUCTURE

FIGURE I1-1 SIFT ARCHITECTURE

tZ

ZZ

SENSORSAND !ACTUATORS

I 1553 II/O BUS

1 ,

I NUMBER 8 ]

PROCESSOR

"_ AND MEMORY

BROADCAST | BROADCAST

l i" I I r



MAR

DAT

BDX-930

MAR DAT

16

I MEMORY 1

16

MEMORY 2 ]

ACCESS VALUE

SDS ECLIPSE

16

I/O BUSTRANSCEIVER

1,°
10

DFA

BD

r--DA_A--_
/ FILE I
[MEMORY1_]

I TRANSCEIVER
BUFFER

t,°

16

RECEIVER 1

CLK DATA

-- 155_

LINK r

.I
1553 MUX BUS

8 MSH

OUT.PUT8DISCRETES

INPUT/ 1

ID OD

TP

10

TRANSACTION

POI NTE R

(COUNTER)

I2_

BUFFER

"10

_jREA 16

L

I TIME

L CLOCK

--'_TFA

10 _0

L--_s 7 J
CLK XMIT

DATA

10

16

TRANSCEIVER

16

I TRANSACTION

I FILE

l MEMORY lk

PEOF

t_

FIGURE 11-2 SIFT PROCESSOR DESIGN



23

.

EOF is updated and the transaction pointer is advanced to the next

transaction if additional words remain. After time-out and the execution of a

NOP, the broadcasts are either terminated or this sequence of events is

repeated.

Receiver Phase--The 25-bit serial word is transmitted in synchronism with a

4 MHz clock over busses that are dedicated to each destination processor.

The transmitted word is stored momentarily in dedicated receivers in the

destination processors. Here, receiver sequencers scan the receivers for full

registers, then steer the data words to the local data file locations indicated

by the destination addresses (Figure 1]-5}.

Each receiving processor receives the same data words and stores these data

words at the same relative location in its local data file. The flow diagram

for this sequence of events is shown in Figure 1]-6. The maximum time it

could take to load a particular data word occurs when (1) the scanner has to

scan a total of eight registers, and (2) the CPU, transmitter, data link, and

six other receivers have prior access to the data file. Under these conditions,

it would take 9.12 psec to load the designated word into the data file. If the

designated word were located in the first register scanned and if there were

no other contenders for data file access only 0.8745 psec would be required to

transfer the word to the data file.

The preceding discussion on the broadcast and receiver sequencers has shown that the

time to complete one transaction (i.e., from the loading of a data file word and its

destination address into the transmitter of processor i to the storing of that word in the

data file of processor j) under the worst-case conditions is equal to 18.253 #sec The

minimum time to complete this transaction is 8.6235 #sec.

4. CPU

Each processor contains a Bendix central processing unit (CPU), the BDX 930 (Figure

1]-7}. The BDX-930 is a microprogrammable, parallel, binary digital processor with a 16-

bit word length. The CPU performs 16-bit parallel arithmetic. An instruction pipeline

organization provides concurrent fetch, decode, and execute operations to maximize

execution speed. A request/response system is used to lengthen those micro-orders that

interface with the slower speeds of tape units and other I/O devices.

The use of high-performance Schottky transistor-transistor logic elements permits very

fast internal clocking rates -- as high as 16 megahertz (62.5-nsec period). This produces

a CPU cycle time of 250 nanoseconds and an average operation rate of 942 KOPS.

Interregister ADD is executed in 500 nanoseconds; firmware-based MULTIPLY is

executed in 5.1 ms.
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The BDX-930 consists of 86 microcircuits mounted on one printed circuit board.

5. Memory

Memory addresses are logically subdivided into mapped segments as shown in Figure

II-8. Each processor's main memory and stack contain 30K words; each word is 16 bits

long. This memory holds the SIFT executive program, the application programs, the

transaction and data files used by the interprocessor broadcast communication

mechanism, and the control stack.

The significant results of each processor's computations are temporarily stored in a

scratch-pad memory data file. Each data file contains 1K data words (each 16 bits long).

High speed interprocessor communication is provided by separate processor/bus interface

elements that control the bit-serial transmission and reception of data words. The

memory destination of each transmission is provided by commands stored in the

transaction file in each processor. Each transaction file contains 1K words (each 16 bits

long).

6. Discrete Functions

A reserved block of 8 addresses is used to address 12 discrete functions that are firmware

or hardware implemented (Figure II-9). These functions are called by executive

programs to perform various input-output, inter-processor communication, and

synchronization functions. The implemented functions include: read processor identity

number; set EOF; read real-time-clock; write (set} real-time-clock; read 1553A registers;

write 1553A registers; and load transaction pointer.

7. External I/O

External I/O information is transferred by MIL-STD-1553A serial links. Time-division-

multiplex controllers govern the data flow between aircraft actuators, sensors, avionics

modules, and the BDX-930 processor. There is one controller for each BDX-930

processor and 1553A bus. Each 1553A controller and bus can support up to 32 remote

terminals with associated actuators, sensors, or avionics modules. A detailed description

of the 1553A controller design is given in Appendix E.

8. Test Control

In order to validate the design to the confidence level required by the specifications,

hardware tests, system tests, and software validation tests may be performed using the

Test Control System (termed Software Development System (SDS) in Bendix

documentation). The Test Control System is capable of performing all the operations of

the Bendix BDX-930 Access Panel. The operations are performed under software control
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executed on an Eclipse S/230 Data General computer (referred to in this report as the

Host Computer). A maximum of eight Bendix BDX-930 computers can be controlled
with the current SDS interface.

The interface between the Eclipse S/230 and the Bendix BDX-930 consists of two

modules. The first module is a standard 15= x 15= card that plugs into any unused I/O
slot of the S/230. The second module is rack mounted in a chassis that connects with

the first module through a standard DB 4192 paddleboard connector, which is wired to

the unused I/O slot of the S/230 computer backplane. The Bendix BDX-930 computers

are connected to the rear of the second module through their respective access panel
cables (see Figure II-10).

9. Comparative Analysis of the Original and Final SIFT Bus Systems

Of primary importance in the design of an ultrareliable fault-tolerant computer system is

the means used for achieving fault isolation. In the initial design, faults were isolated to

a specific processor or bus. This was accomplished by using a specially designed

redundant bus system to interconnect the processing units. Each processor and its

associated memory formed a processing module, and each of the modules was connected

to a multiple bus system. A block diagram of this system is shown in Figure II-11.

Communication between processors was achieved by serial linkages set up by the bus

controllers. This process was characterized by a request/response interaction between

processors and controllers (see Figure II-12) and functioned in the following manner. A

processor Pa requiring data from another processor's memory Mj would issue a request

for a specific bus, e.g., B k. When that bus became free, the request would be

acknowledged, and the bus would wait for memory M i to detect a request for data.
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Memory Mj would then access and transfer the data to bus Bk, which would then release

Mj, and transfer the data to Pa' which would then release B k.

Of primary concern in evaluating this design is the time taken to complete a transaction

for different conditions. The system evaluated consisted of 8 processors and 8

interconnecting busses. Table II-1 gives abreakdown of the time taken to complete a

transaction in the absence of any bus-contention or memory-contention delays.
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Table I1-1

INTERCONNECTING BUS SYSTEM

INTERCONNECTING BUS SYSTEM (8 PROCESSORS_ 8 BUSSES)

- NO BUS OR ,_[EMORY CONTENTION DELAYS -

The sequence of events and the maximum time each requires

are as follows:

i. memory identification setup 0.937 9s

2. bus controller cycle 5.321 ps

3. memory cycle 10.664 ps

4. memory data storage 1.312 _s

total time - 18.234 _s

It is evident that the time to complete a transaction will be longest when a total of 8

processors are contending for a particular bus and a total of 8 busses are contending for

a particular memory. This worst-case transaction time is

8 [time for 7 busses to access a particular memory I

+7 [time for processor to acquire bus, bus to access memory, memory data to

be transmitted and bus to be released I

+ [time for designated processor to acquire bus, bus to access memory,

memory data to be transmitted to, and stored in, processor]

The time for 7 busses to access a particular memory is

7 [memory cycle - memory request scan + scanner advance]

--7 [10.664 #sec - 1.0/_sec + 0.1875/_sec]

---68.9605 psec

The time for a processor to acquire a bus, a bus to access a memory, memory data to be

transmitted and the bus to be released is

[memory cycle - memory release - memory request scan + bus controller

cycle ;scanner advance]

-- [10.664 psec - 0.249 psec - 1.0 psec + 5.792 psec + 0.1875 ltsec]
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15.3945 _usec

The time for a designated processor to acquire a bus, a bus to access a memory, memory

data to be transmitted to, and stored in the processor is equal to

[memory identification setup + bus controller cycle + memory cycle +

memory data storage - memory request scan + scanner advance]

-- [0.937 psec + 5.321 psec + 10.664 _usec + 1.312 _usec - 1.0 psec + 0.1875
/tsec]

-----17.4215 jusec

Thus, the worst-case transaction time is

8(68.9605) + 7(15.3945) + 17.4215

-_-- 676.867/_sec.

It is evident that, under these worst-case conditions, i.e., maximum contention at the

memory and at the bus controller, the transaction time is intolerable.

In order to reduce this time delay to an acceptable value, a broadcast bus-design concept

was investigated and adopted. There are many advantages to be attained by

implementing the broadcast-bus design. This design (see Figure II-13) provides dedicated

busses and receivers for all data transmissions so that there are no delays due to

contention for a particular bus and memory. A processor neither requests data nor

requests that data be transmitted over a particular bus. When a value has been

calculated in the course of one task that has been designated to be needed by other

tasks, it is broadcast to all other processors. This occurs in the following manner: The

data file is loaded with the values to be broadcast and the transaction file is loaded with

the addresses to be broadcast to. The transaction pointer is then set to start the

broadcast. The broadcast sequencer broadcasts a data word from the data file along

with the associated destination address from the transaction file. Data words are

transmitted at a rate of one data word every fifteen ms. This rate was selected to ensure

that the receiver had sufficient time to detect the data word and store it in its local data

file. The broadcast sequence continues until end-of-file (EOF) is reached in the

transaction file. The flow diagram for this sequence of events is given in Figure II-3 and
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discussed in Section 3'.

The 25-bit serial word is then concurrently broadcast to all other processors in the

system. Following transmittal acknowledgment and two NOPs, the EOF is updated, and

the transaction pointer is advanced to the next transaction if additional data words

remain. After time out and the execution of a NOP, the broadcasts are either

terminated or this sequence of events is repeated.

In 6.25ysec the 25-bit serial word is transmitted, in synchronism wbth a 4 MHz clock,
over l)usses that are dedicated to each destination processor. The transmitted word is

stored momentarily in dedicated receivers in the destination processors. Here, receiver

sequencers scan the receivers for full registers, then steer the data words to the local data

file locations indicated by the destination addresses. Each receiving processor receives

the same data words and stores these data words at the same relative location in its local

data file. The flow diagram for this sequence of events is shown in Figure g-6.

*Following Figure II-3, the worst case time for placing the data file word in the transm,itter would occur

if the data link had prior access to the data file. In this case the time would be 1.43_65 #see. If the

transmitter received immediate access to the data file, the time would be 0.6245 #see. Following two

NOPs {No-Operation Cycles) requiring 0.250psec, the 7-bit transaction file word is placed in the

transmitter, and its receipt is acknowledged. The maximum time for this action to take place results

when the 930 had initial access and equals 1.1865 #see. In the absence of any contention for' the data file,

the time is 0.6245 #see. The total time for loading the transmitter, i.e., placing the data file word the

transaction file words in the transmitter, thus ranges from 1.4990 to 2.8730.
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The maximum time to load a particular data word occurs when the scanner has to scan

a total of 8 registers and the 930, the transmitter, the data link, and six other receivers

all have prior access to the data file. Under these conditions, it takes 9.12/tsec to load

the designated word into the data file (see Table II-2).

Table 11-2

TIME TO COMPLETE SPECIFIED OPERATION

IN RECEIVER SEQUENCER LOOP

SEQUENCER TIME IN MICROSECONDS

OPERATION

PASS 1 PASS 2 PASS 3 PASS 6 PASS 7 PASS 8

SCANNER
0.1875 0.1875 0.1875 0.1875 0.125 0.1875ADVANCE

NOP 0.125 0.125 0.125 0.125 N/A 0.125

LOAD DATA FI LE 1.686 0.8115 0.562 0.562 N/A 0.562

CLEAR REGISTER

FULL FLAG 0.125 0.125 0.125 0.125 N/A N/A

NOP 0.125 0.125 0.125 0.125 N/A N/A

SUBTOTA LS 1.374 1.1245 0.125 0.8745

PASS 4 PASS 5

0.1875 0.1875

0.125 0.125

0.562 0.562

0.125 0.125

0.125 0.125

1.1245 1.1245 1.1245

NOTE: Total worst case time = 9.12 #sec

N/A = Not applicable

If the designated word were located in the first register scanned and if there were no

other contenders for data file access, only 0.875/_sec is required to transfer the word to
the data file.

Table II-2 gives a detailed breakdown of the 9.12 ttsec required to load a particular word

into the data file under worst-case conditions. As indicated, it requires eight partial or

complete passes through the loop. During the first pass it is assumed that the 930 and

the transmitter have prior access to the data file and that, during the second pass, the

data link is accessing the file. The time for the seventh pass is minimal since it assumes

that this register does not contain a full word.

In summary, the time required for the transmission of a word from one processor to

another is the sum of the times of three sequential funcions: loading the source-processor

transmitter (1.499psec to 2.873/tsec), transmission (6.250/_sec), and reception at the

destination processor (0.875/_sec to 9.120/tsec). The time required under worst-case

conditions is 18.243/_sec, and under best-case conditions is 8.624/zsec. These times can be

compared, respectively, to the 676.867/_sec and 18.234/lsec obtained for the contention-

bus system.
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In summary, the broadcast-bus design concept has resulted in the achievement of

acceptable transaction times and, in addition, has simplified the logic design and reduced

the required number of interface signals.

B. THE SIFT FAULT-TOLERANT POWER SUPPLY

1. Introduction

The SIFT computers receive power for their operation from a two-level power supply

system. Each computer contains its own power supply, which converts 28 vdc power

into the various voltages needed for the digital circuit boards. The low-power CMOS

memory is supplied separately, preserving its information during times when the

processor is not operating. The set of SIFT computers obtain power from a central

source, the Fault-Tolerant Power Supply (FTPS), which derives its primary power (117

vac) from the main aircraft power system.

The FTPS has two functions: (1) reliable supply of power to the SIFT computers during

normal operation, and (2) reliable supply of power to the memory supplies only, under

two special circumstances: (a) temporary total loss of aircraft power (a few minutes),

and (b) ground testing (up to twenty-four hours).

Contemporary aircraft employ several configurations of primary power. The FTPS is

designed to receive inputs from a set of four input power lines and to tolerate the

following faults or losses:

• Loss of power on any one or two power input lines with no loss in function

• Electrical failures in any one or two internal power units

• Any electrical failure in the internal battery system (except that this will

cause loss of the power back-up function)

• Short-circuit load conditions in any number of outputs, one at a time, with

no loss of service to the remaining loads.

Achievement of these objectives required careful design. The greatest design complexity

arose from the nonlinear and nonconsistent behavior of batteries, even those of the

highest production quality.

The FTPS was designed and built by August Systems, Incl A thorough test procedure

was designed by SRI, and lengthy tests were conducted by SRI and August Systems

during its development.

The remainder of this section reviews the FTPS design and the procedure developed for

its testing.
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2. Brief Description of the FTPS

The FTPS Consists of four parallel August Power Supplies (APSs) driving a common

load, which consists of eight SIFT processors (see Figure II-14). Each of the four APSs

consists of a tandem connection of a Primary Power Supply (PPS), a Battery Backup

Unit (BBU), and a Diode Interconnection Network {DIN).

The PPS is a Lambda LGS-EE-28-OV-R supply capable of delivering nominal 28 volts

(i.e., 24v to 30v), 25 amps (at 40°C), from a 105-130vac source, 47-440Hz. It is protected

internally against excessive input voltage or output current. (See the manufacturer's
literature for additional specifications.)

The BBU consists of a Lambda 41-volt charging supply, a series cascade of 16 GATES,

2.2-volt, lead-acid batteries (0800-0004 5AH "Xm); a battery charging circuit and

indicator light; a circuit breaker (CB); and a pass element and regulator (PER) unit.

The PER switches in the battery supply when the PPS supply voltage falls below a

preset threshold value and switches out the batteries when the output voltage drops
below another threshold.

The DIN is a diode distribution network in which corresponding DIN output terminals of

the four APSs are bused together to drive the eight 28-volt inputs of the SIFT

processors.

i

In addition each output line contains a 10a fuse, and a common air-circulating fan is

supplied from the PPSs through a 4-diode network. In the laboratory version, the fan

represents a single point of failure; in an aircraft installation, cooling air would be
derived from the aircraft itself and the fan would not be used.

3. Testing Strategy

The Fault Tolerant Power Supply (FTPS) for SIFT presents a unique challenge in

testing. Because of the redundancy built into its design, an overall functional test, even

under stress conditions, is not sufficient to verify that the entire FTPS is free of faults.

Rather, it is necessary to check that, in the presence of a single fault in one member of

every redundant set, the set is still able to perform its intended function without

degraded performance. Protection against certain double faults has also been provided

in the design and must be similarly tested. Fault isolation must be checked; namely, it

must be verified that a fault in any one member of a redundant set does not, in itself,

prevent proper continued operation in another, fault-free member. Similarly, short

circuit at the power input to any one SIFT processor must not cause interruption of
power to the other processors.

The test procedure described in the next section verifies both the performance and the

fault-tolerance of the FTPS. It is based upon a full failure modes and effects analysis
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(FMEA), at the level of the circuit elements, for the entire FTPS except the BBU

charging and PER, which are regarded as single functional units not further decomposed.

Performance is tested against the specification of constant and interference-free output

voltage and current under full-load conditions (all processors operating), assuming

adequate input ac power and assuming a normal operating environment. Quantitatively,
these specifications are:

Input: 117 _ 10% vac rms, 400 Hz.

Output: 28 +_ 4 vdc, nominal 25a; ripple _ 1.5 v-peak-to-peak, IHz to
10kHz.

Fault tolerance is provided through redundancy and fault isolation. Redundancy occurs
in the FTPS at three levels:

• Level 1: The FTPS consists of four APSs, operating in parallel.

• Level 2: Within each APS, the required output power can be supplied from

two sources: either the PPS or (for a limited time) the backup battery in the
BBU. (Switchover is automatic.)

• Level 3: Within each APS, overvoltage/overcurrent protection is provided in
both the PPS and the BBU.

Fault isolation is achieved by a high degree of mechanical isolation and by electrical

isolation through the power diodes in the BBU and DIN of each APS. These diodes

prevent propagation of faults from a defective APS to a good one. They also protect

against loss of power to good processors in the event that one of the eight fan-in

connections to the fuses develops a dead short. Protection is provided against most

double faults, except under certain conditions deemed to be extremely unlikely.

All redundant units and isolation features must be checked individually during the

course of testing, to the maximum extent possible without danger of damage to the
hardware.

Protection has been provided in the design of each APS for the following specific failure

conditions. Each of these conditions must be checked during the testing for adequate
fault protection:

PPS:

-Steady overvoltage or undervoltage, including zero voltage

-Hum or high-frequency interference (400 Hz or higher), due to defective
filtering or unintended oscillation

-Transient interference or erratically varying output voltage

-Circuit breaker breaking too slowly, at too high load current, or not at all
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-Poor output regulation to variations in line voltage (117v normal)
-Poor output regulation to variations in load current (0-25 a)
-Output impedancelow or zero.

BBU:

-Single diode is shorted or its back resistance is too low

-Any circuit node shorted to ground

-Any single diode open or forward resistance too high

-Any single circuit connection open

-Battery charge control Circuit defective: charge rate too high or low, or

circuit not switching battery in and out at the correct voltages or otherwise

erratic

-Main regular circuit defective: switchover not occurring at correct voltages or

erratic; battery drain excessive

-Battery weak or dead (high internal impedance, cell open or shorted, low

output voltage, or not accepting charge); battery charge indicator circuit or

light inoperative.

DIN:

-Any single diode shorted or back resistance too low

-Any circuit node shorted to ground

-Any single diode open or forward resistance too high

-Any single connection open

-Any single shorted-diode detector circuit, or its corresponding light,

inoperative

-Any single power diode not capable of handling full load current without

overheating

-Short between any two output terminals.

In addition, a few global failure conditions need to be checked for in the FTPS as a

whole:

FTPS:

• Reduced dc output voltage or current from any one or two APSs

• Transient interference from any one APS

• Interruption of primary 117 vac power to the FTPS for a period of 3-5

minutes

• Short circuit to ground at any one of the eight outputs.
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4. Concluslons

A detailed test procedure based on the set of failure assumptions listed above was

developed and applied. Several subtle failure conditions were uncovered through its

application.

The detailed test procedure, the results of the testing, and the details of FTPS circuit

design, circuit operation, calibration, and maintenance have been submitted separately to
NASA.
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HI. SIFT Software

This chapter describes the organization and design of the SIFT executive system, which

is responsible for all fault-tolerance functions in the SIFT computer system. It also

presents formal specifications for all constituent program modules and an example of the

Pascal code for a Uvoter" module (documentation of the full code has been submitted to

NASA). A guide to the creation of application programs is given in Appendix F.

A. ORGANIZATION AND DESIGN

1. Introduction

This section describes the organization, design and detailed functional description of the

SIFT executive system. The discussion is preceded by an abstract description of system

processing and communication facilities as seen by the executive system.

2. Processing and Inter-process Communication

The following is a brief description of SIFT processing and inter-process communication

facilities as seen by the SIFT executive software system.

a. Processing Structure

Computing in SIFT consists of iterations of well-ordered, pre-planned sequences of task-

processing, voting and inter-process communication. Each task instance consists of a

reading of inputs, program execution and broadcasting of outputs, all within the same

iteration. There are no global data and no data retained from one iteration to the next;

rather, data are passed from task to task (more specifically, the inter-task data consist of

the results of votes over sets of redundant task outputs). There is no built-in logical

regulation of inter-process communication; rather, all data transfers and task initiation

must be scheduled in advance.

b. Inter-process Communication

Although SIFT is physically a distributed-processing system, all transfers of information

are pre-scheduled and coordinated by synchronized clocks. Transfer of information

between processors is therefore more suitably viewed as program-controlled transfers

between buffer registers within a single computer than as logically synchronized transfers

of data between asynchronously operating processors.

Physical transfer of data between processors is accomplished by programmed calls to

special machine functions, which serve to broadcast data from the originating processor

to all other processors. Broadcasting is undirectional, without acknowledgment, and is

initiated by each originating processor(s) according to its own schedule. Since each
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processor'sscheduleis a part of a preplanned overall schedule,and since all non-faulty
processorsare synchronizedto within a controlled amount of time-skew, inter-processor
communication is well-regulated on a global basis.

In each processor, broadcasting makes use of two special 1024 word blocks of memory,

known as the data file and the transaction file. The data file is further broken down

into eight blocks of 128 words, each known as data buffers. The data broadcast by

processors are received and stored in these data buffers, a separate data buffer being

used for information from each processor. Aside from the host processor, data can be

placed in a particular data buffer by only one other processor.

The transaction file is used to control the broadcast. The broadcasting processor stores

in the transaction file a sequence of destination addresses and sets the transaction pointer

to the start of the sequence in the data file. Setting the transaction pointer initiates the

broadcast. The last entry in the sequence is marked with an end-of-file flag, which stops

the broadcast. All processors receive all broadcast data, but all processors do not

necessarily run all tasks. Hence, only a subset of them may actually use the data; the

data received by the other processors is voted but not used.

3. The SIFT operating system

The SIFT operating system provides the fault-tolerant environment in which the

application tasks are executed. Its functions generally fall into one of these classes:

Scheduling • The operating system must cause application tasks to be executed at

the proper time.

Synchronization The operating system must keep the processors moderately

synchronized, sufficiently to assure unambiguous inter-task
communication.

Consistency

Communication

Fault masking

Reconfiguration

The operating system must provide identical copies of unique input

data to all good processors.

Results of tasks must be transmitted to all processors in a timely
manner.

Erroneous data, generated by a faulty processor, must not be allowed

to propagate, and the source of erroneous data should be identified.

The operating system must be able to detect a faulty unit and

logically remove it from the system, in order to avoid the possible

simultaneous occurrence of faults in more than one active processor.
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Input/output The operating system must see to it that sensor data are received

from, and actuator data are transmitted to, the interface to the

aircraft (according to MIL-STD 1553A convention).

Each of these functions will be addressed in the following sections.

a. The SIFT Hierarchy

The hiding of fault-tolerance mechanisms from the application tasks is one of the

benefits of the SIFT design. This is accomplished through the use of a hierarchical

structure, exhibited as Figure III-1. The SIFT hardware itself is at the lowest level of

this hierarchy. This level supports a set of modules that together implement the SIFT

virtual machine, which provides the fault-tolerant facilities that are local to each

processor. These facilities include error detection, buffer (or data file) management,

voting, and local task scheduling. The SIFT virtual machine, in turn, supports more

global fault-tolerant facilities responsible for synchronization and reconfiguration. These

facilities are part of the upper levels of the operating system, but the programs that

implement them are treated by the lower levels in exactly the same way as the

application tasks. The highest level of the hierarchy is a module consisting of sets of

precomputed task distributions and schedules for all possible combinations of faulty

units. This module provides a framework for performing reconfiguration to achieve

fault-tolerance.

b. Design for Provability

At the high level of reliability required for the SIFT system, the validity of the

implementing software itself becomes a serious issue. An overriding concern during the

design of the SIFT operating system has been that it be mathematically provable. Thus,

every opportunity has been taken to simplify the system to the greatest extent possible,

so as to make formal proof feasible.

Our approach to proof (discussed in detail in Chapter IV, Validation and Verification) is

to develop an intuitively clear and complete model of the SIFT system and to determine

that the model .expresses the necessary reliability properties. We must then prove that

the model accurately describes the SIFT system. To do so, we develop another model

that is slightly more complex, and prove that the properties of the simpler model are

implied by those of the more complex model. We continue this process until the level of

the actual code of the SIFT system is reached. At this point we prove that the code

implies the properties of the next higher model. To achieve a complete proof, it would

be necessary, ultimately, to verify that the hardware correctly interprets the software,

according to the machine instructions assumed in the software design.

The model immediately above the SIFT software constitutes a set of precise

specifications on SIFT executive functions. These specifications are written in the

SPECIAL language, which is a component of the SRI-developed software methodology

HDM (Hierarchical Development Methodology)[27]. The SPECIAL language is

summarized in Appendix C, and a full set of specifications is included in Appendix D.
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To ease the proof, the SIFT system was written in a subset of PASCAL. In general it is

easier to prove a program written in a high-level language than to prove one written in

assembly language. While a program written in a high-level language usually is not as

efficient as one written in assembly language, recent advances in compiler technology

have reduced this penalty to acceptable levels. The PASCAL for the Bendix 930 is a

compiler that takes advantage of these advances. Additionally, the penalty can be

reduced by carefully writing the code, keeping in mind what the resulting object code is

likely to be. The resulting PASCAL code should be provable and fast. (It may also be,

at least in some cases, inelegant, i.e., verbose.} One version of the PASCAL code for the

voter module appears at the end of this chapter.

c. Organization of Processing and Communication in SIFT*

The version of SIFT delivered for use in AIRLAB employs a very restricted form of

process creation and interprocess communication, compared with the version described in

the paper printed in the October 1978 Proceeding of the IEEE [Wensley]. The 1978

version incorporated features such as

scheduling: priority based, preemptive and periodic

task length: arbitrary

allocation of tasks to processors: dynamic

task replication and voting: transparent to the application engineer

iteration rates: multiple

A design was developed for an operating system that would support these features, but it

was to() complex to be verified by proof of correctness, given the present state of the art.

In order to permit formal verifiability, the flexibility of processing and communication

aimed for in the 1978 design was severly curtailed. The corresponding features of the

baseline AIRLAB design are:

scheduling: static, preplanned, non-preemptive

task length: discrete segments

allocation of tasks to processors: static task replication, scheduling and voting: manual

construction by the

application designer of schedule tables, assignments of task

replicates to processors and voting tables

task iteration rates: a single rate.

The resulting design places a heavier burden on the application programmer and tends

to be less efficient in utilizing hardware resources. It is, however, more determinate, and

hence more readily analyzable for completeness and consistency. Elimination of

mechanisms for dynamic process creation, multilevel priorities, multiple iteration rates,

etc., also tends to reduce intrinsic vulnerability to faults and design errors.

*We are indebted to Daniel L. Palumbo and Ricky W. Butler for the comparison presented here.
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d. Task Structuring and Communication

This section will define and explain the use of tasks as a means of organizing processing
and inter-process communication.

The basic element of computation on the SIFT computer is the task. There are

application tasks and executive tasks. Examples of application tasks include (for the

flight-control application) the yaw damper, the pitch inner loop, the roll inner loop, and
others. Clock synchronization is an example of an executive task.

Computation in SIFT is conducted in regular time segments called frames and

sub frames. The lengths of the segments are system parameters. In the present design,
the subframe length is set at 3.2 milliseconds. A fixed number of subframes combine to

form a frame. In the design, there are 31 subframes to the frame, which is thus

approximately 100 ms long. The number of subframes per frame is also a system

parameter. Each task runs at a regular rate, the fastest tasks running once a frame, and

others running every other frame or with an even longer period. Tasks that run once a

frame are scheduled to a specific subframe, while slower tasks fill in the empty
subframes.

A SIFT task is highly structured. Each iteration of a task starts from the initial state of

the task, with no data carried forward from the previous iteration of the task. The task

then obtains input data from the postvote buffers. These inputs may include data from

other tasks, data from the previous iteration of this task, and aircraft sensor inputs

through interactive consistency. The task must not obtain any input from any source

that is not voted. The task then executes and generates its result values, which are

distributed to other tasks by the broadcast mechanism. Broadcasting from a given

processor is performed by placing the result values in the processor's Data File and

activating the broadcast transmitter to transmit those values to the data files of all of

the other processors. These results in the data files are subsequently voted and the

consensus results placed in postvote buffers, where they can be used by other tasks.

Normal tasks are scheduled so that their execution requires one or more subframes,

during which their results are broadcast. These subframes may differ for different

processors. The voting of the results is also a scheduled operation, and the subframe

during which the voting occurs may also be different on different processors. The
schedules are constrained so that:

• No voting of a task's results can be scheduled before the subframe following
the last execution subframe for that task on any processor.

• No task that needs to use the voted results can be scheduled to run on a

processor before the vote occurs on that processor.

For urgent tasks, transport delay (the total time required for sensor sampling,
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computation and actuator drive) can be a critical design criterion. Such tasks on SIFT

must be scheduled so that replications of the task execute in the same subframe on all

processors. The results can then be voted at the start of the next subframe and will be
available for use by further urgent tasks during that next subframe.

TASKIJI J f ITABLE TASK NO. STATE VECTOR CURRENT PROCESSOR SET SUBFRAME

i,

TABLE SUBFRAME NO. TASK NO. VOTED DATA SET

FIGURE 111-2 SCHEDULE TABLES

e. The Scheduler

To accomplish the necessary replication, execution and intercommunication of tasks, a
schedule must be composed that explicitly:

allocates task replicates to processors

schedules all task events so as to assure proper frequency of occurrence

and satisfaction of inter-task delays, and

designates data elements to be voted, and the subframe in which they are voted.

This schedule may be conceived as an N x M table of task events, where N is the

number of processors in a working configuration and M is the number of subframes in a

frame. For a given processor, the schedule is a list of votes and task activations in
successive subframes.

This information is employed by the Scheduler function. It is organized in two sets of

tables: The Task Table, and The Subframe Table, as shown in Figure Ill-2. The task

table is organized by the task identification number, and contains:

• A state vector pointer for the task. This is where a state is saved when a
task is interrupted to run another task.

• A list of the processors that the task is presently running on.
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• The subframe in which the task should run.

In the sub frame table, each subframe has a set of entries; an entry contains:

• The data to be voted upon during that subframe.

• The task to run at that subframe.

The information in these tables enable the scheduler to operate very efficiently. Aside

from the power-up code, the scheduler is the only portion of the SIFT operating system

that is interrupt-driven. At the start of every subframe, a clock interrupt occurs, and

control is transferred to the scheduler. The scheduler suspends the currently executing

task, orders the voter to vote data as scheduled, and then starts (or resumes) the task

scheduled for this subframe. The lowest-level task is a diagnostic task that is always

ready to run. Figure III-3 shows the detail of a subframe. Specific guidelines on

schedule construction are given in Appendix F.

I I I I

_ EXECUTION OF SCHEDULED TASK

START OR RESUME TASK

VOTE DATA AS SCHEDULED

SAVE STATUS OF CURRENT TASK

L
DIAGNOSTICS

FIGURE 111-3 SUBFRAME STRUCTURE

f. The Voter

The purpose of the voter is to perform a majority voting operation on task outputs and

detect and report erroneous outputs. The voting function is applied to multiple

instances of data in the data-file buffer, and the results are placed into the appropriate

slot of the postvote buffer. The tasks get their actual values from the postvote buffer,

and have no direct interaction with the voting process. All votes are done on the basis

of an exact match; that is, all inputs that are accepted as contributions to the output of
the voter must be identical. Processors providing values that are not identical to the

output are reported to the error handler (Subsection g).
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In the unlikely event that the voter cannot find a majority, errors are recorded for all
processorsand a =no vote n value is placed in the postvote buffer. This value may be

preset as desired by the application tasks, and is used without change by the SIFT

operating system. (the interpretation of this =no vote" signal, and the action to be

taken, is application dependent, and is not built into SIFT). Figure III-5 shows the

relationship of the postvote buffer with the data file and the transaction file.

g. The Error Handler

The SIFT error handler keeps track of errors detected on the local processor. These
errors fall into two distinct classes:

1. Errors detected as the result of receiving bad data from some other processor.

2. Errors detected as the result of some local malfunction.

It is not always easy to distinguish between these two cases. Consider, for example, a

voting error that occurs because processor X's value doesn't agree with that of processors

Y and Z. It may seem obvious that this is an error belonging to the first class above, but

if the disagreement is the result of an undetected parity error in the data file of the local

processor, then the error clearly belongs to the second class. Unfortunately, in this case

we can tell only that the values disagreed but not why they disagreed. Each processor

has a processor error table, which it uses to keep track of the number of errors it has

detected involving other processors. Ultimately data will be used by the SIFT executive

to help determine what reconfiguration actions to take (Subsection h, below).

There are certain errors, however, that may result only from a local malfunction. These

can be grouped loosely under the title abnormal task termination errors. Such errors

can be the result of a task raising an exception condition, or the scheduler determining

that a task has not been completed within the allotted time period (possibly the result of

a runaway loop). All errors of this nature may be recorded for further diagnosis, either

by on-board diagnostic processes or by ground support equipment.

h. Fault Diagnosis and Reconfiguration

Fault diagnosis and reconfiguration are accomplished by the error reporter, the global

executive, and the reconfiguration task. The first and last of these run on every

processor. The global executive runs as any other replicated task.

Tile Error Reporter

The error reporter runs on every processor. Its function is to analyze the local error

table to determine which processors are perceived to be malfunctioning. The error

reporter considers a processor to be malfunctioning whenever its count of errors in the

error table exceeds some threshold value. This threshold is a system parameter, and has
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been set at the level of two errors in the present design. A better value, or perhaps a

more complex decision procedure, will be determined through experience with the

operational system. The results of the error reporter's analysis are broadcast in the same

way as any other task-computed data. Since not all processors run all tasks, each is

likely to have a slightly different error table, hence, the error reports issued by different

processors are not guaranteed to match exactly. Therefore, these error reports are

themselves subject to analysis; that analysis is done by the global executive task.

The Global Executive

The global executive, a task that runs on multiple processors, analyzes the reports issued

by the error reporter and determines whether to modify the SIFT system configuration.

The decision is based on the following rule:

Whenever the reports from two or more processors identify another

processor as malfunctioning, the decision is made to reconfigure the system so

that the processor is logically removed from the system. The report from a

processor is never used to determine whether or not that processor is
malfunctioning.

This rule needs some explanation. At first it seems unreasonable to ignore a report from

the processor under consideration. Indeed, it is certain that a processor that calls itself

faulty is in fact malfunctioning, but it is precisely because it is malfunctioning that other

processors must ignore it, in order to avoid confusion. For example, the malfunctioning

processor could conceivably send different reports to different copies of the global

executive. If only one other processor has noticed the malfunction, some instances of the

global executive will decide that a reconfiguration is needed, while others will decide that

it is not. Since the decision of the global executive is voted upon by the reconfiguration

task, an error would be attributed (incorrectly) to the processor that noticed the

malfunction. This would configure out a correctly functioning processor, and eventually
the system could fail.

The output of the global executive is a list of processors to reconfigure out of the system.
This list is broadcast to the reconfiguration task.

The Recon figuration Task

The reconfiguration task receives inputs from the global executive and carries out the

orders. Precomputed task and buffer tables exist for each possible number of

functioning processors. Thus, for an eight-processor SIFT, there are eight sets of tables.

Given a particular combination of working processors, each processor determines its

virtual processor number. The processor uses this number to determine which tasks it

should be running and to build the appropriate schedules. The act of reconfiguration

involves: (1) mapping the real processor numbers into virtual processor numbers, (2)

determining which set of tables to use, and (3) building the schedule tables.
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The relationshipof the tasks concerned with diagnosis and reconfiguration is shown in

Figure HI-6.

FIGURE 111-6 TASKS CONCERNED WITH RECONFIGURATION

i. Clock Synchronization

The design of the SIFT system, as of other reliable systems that use voting, requires a

degree of synchronization between processors. Exact-match voting requires identical

outputs from the replicated programs on working processors, which implies that those

replicated programs obtain identical inputs, a condition that itself requires an element of

synchronization between those replicated programs. In SIFT, as in other designs, this

synchronization is obtained by providing each processor with its own clock, by reference

to which the various programs are scheduled, and by ensuring that the clocks of the

various processors remain synchronized to within a tolerance. Designs that depend on

bit-by-bit voting at the instruction execution level require quite tight clock

synchronization, to within, say, 50 nanoseconds, but the buffering and software voting

approach of SIFT allows synchronization at the task level, thus permitting a relatively

large skew between clocks without risk; in the present case 50 microseconds is

acceptable.
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Even within the more relaxed skew constraints of SIFT, it is not possible to synchronize

the clocks initially and expect to obtain a rate of drift low enough that the

synchronization constraints can be satisfied for the required flight duration. To maintain

a skew of less than 50 nanoseconds over a 10 hour flight implies a relative rate of drift of

less than about 1.4 x 10 .9 seconds/second. While such rates of drift are not impossible to

obtain, they require clock technology of a type quite inappropriate for SIFT, whose

clocks actually have individual drifts of about 10 "5. This is a factor of almost 10 .4 more

than can be accepted without continuous resynchronization.

The mechanism by which the clocks are resynchronized could be itself a cause of failure

unless the design is such that a fault in any one clock cannot cause the other clocks to

deviate from each other by more than the prescribed limits. An approach to fault-

tolerant clock synchronization is discussed in the following section.

Fault-Tolerant Clock Synchronization Algorithms

Existing systems use a relatively simple algorithm to resynchronize clocks, which is

widely purported to be "obviously" sound even in the presence of a faulty clock. This

algorithm, for three clocks, requires that each processor observe the three clocks and

reset its clock to the median clock of the three. This algorithm is deemed "obviously"

sound since, with a single faulty clock, the median clock is either a good clock, in which

case synchronizing to it is acceptable, or else it is a value between two good clocks, in

which case synchronizing to that value is also acceptable. Daly, et al. [2], give an

algorithm for four clocks, which is designed to be immune to transient spikes but which

also claims to mask any form of behavior of a single faulty clock.

Both of these existing algorithms are at risk to a "malicious" clock that gives different

time values to the other clocks. Consider three clocks, A, B, and C, of which A runs

slightly faster than B and C has failed. If C reports to A a time value ahead that of A,

and to B a time value behind that of B, then A and B will both see three clock values of

which one is ahead of them, one is behind them, and their own clock value is the

median. Thus A and B will both decide that no change in their clocks is required and

will gradually drift out of synchronization. A similar failure mode exists for the Daly
algorithm.

Even where the clock values are distributed as clock pulses on buses that lead to all

other clocks, so that the same clock pulse is sensed by all other clocks, this type of fault

could exist, caused by a degraded pulse generator and slightly different thresholds in the
pulse receivers.

Appendix B describes three possible clock synchronization algorithms and proves their

fault tolerance. The particular clock synchronization algorithm (interactive convergence)
selected for SIFT requires four clocks to mask any single faulty clock, or 3N+1 clocks to

mask any N simultaneous clocks. The algorithm is:
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• Each processor obtains the values of all the other clocks remaining in the

configuration, comparing those values to the value of its own clock to find

the apparent skew between those clocks and its own

• The processor regards the skew of its own clock as zero

• The skews are examined to find any that are greater than some threshold.

Such skews are set to zero

• The arithmetic mean of the skews is calculated and that mean is used to

correct the processor's own clock.

If

N is the total number of clocks remaining in

the configuration

G is the number of good clocks

F is the number of failed clocks

T is the time between resynchronizations

t is the time required to resynchronize

r is the maximum rats of drift of a good clock

• is the maximum rs_ding error in obtaining the time

value of & clock

E is the bound on the m_ximum clock skew (_ in Appendix B)

Q is the threshold for rejection of a clock skew (A in Appendix B)

then it can be shown that the maximum clock skew can be bounded by E provided that

E _ (3 F r(T ÷ t) ÷ 2Ne ÷ 2Grt)
(N - sF)

and the threshold Q satisfies

E + s + r(T+t) < Q < G(E-2e-2rt) - Fr(T÷t)
2F

Given the expected SIFT parameters of

N-"4, F--l, G--3, T--1 ms, r'-I _us, e-'5/_s

we obtain E _ 43 _us.

microseconds) are:

Bounds for Q, given several values of E (all values in
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for E -- 45 51 < Q < 52

E--50 56 < Q < 59

E--55 61 < Q < 67

E=60 66 < Q < 74

The most uncertain and criticalparameter ise.Should e turn out to be I0 microseconds,

we would obtain E > 83 #s. Bounds for Q, given several values for E (allvalues in

microseconds) are:

E= 85 96< Q < 97

E= 90 101 < Q < 104

E= 95 106 < Q < 112

E -- 100 111 < Q < 119

Interactive Consistency

The three channel, majority-voting structure of SIFT depends on an assumed initial

condition that at least two of the three channels have guaranteed the correct results.

Thereafter the algorithm of having three independent channels voting and recalculating,

with, at most, one faulty channel, suffices to maintain that condition of least two correct

results. We must, however, ensure the assumed initial condition.

Consider an item of information entering the system from an unrepiicated source. To

obtain the three channel operation, this item of information must be replicated from its

single source to each of three channels. This operation may be affected by a fault such

that one or more of the channels obtains erroneous information. There are several

possible outcomes:

• The three channels all obtain the same information, which may be correct or
erroneous

• Two of the channels obtain one value, but a different value is given to the

third channel; the next voting will allow all three channels to obtain the same

value, though not necessarily the correct value

• .All three channels are given different values; now the majority vote is unable

to select any one of these, and some default value must be used.

Clearly if the information is a composite of several component values and the three
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channels each have plausible but different values, voting on each component

independently might find agreement between different pairs of processors for each

component. This would result in a 'nonsense' value but would not give an indication of

the real lack of consensus.

Even in a broadcast system using common buses (unlike SIFT) it is possible for a single

faulty source to deliver different values to the three channels. For example, a fault may

cause a marginally degraded output pulse, which is recognized by some channels and not

by others. This is sufficient to cause all the problems discussed here.

Special care must be taken where one of the three channels is the single source of the

information. Figure Ill-7 shows a typical case of a three-channel system, in which

channel A generates a single value to be replicated on the three channels. Attached to

each arrow is the value transmitted. Consider the possibility that channel A is faulty so

that the values generated by it are arbitrary. In the illustrated case, the faulty channel

always sends value Y to channel B and value Z to channel C.

Note that channels B and C will each be able to obtain a majority among their inputs,

but they will obtain different values.

It might be thought that this problem could be resolved by a slight increase in

sophistication, perhaps by careful analysis of the voter error reports or by a further

exchange of information between channels. However, Pease, et al. [24], demonstrate

that, for a three-channel system, no such algorithm can exist and that four channels are

required to mask all faults of this type. More generally they demonstrate that, to mask

N such faults simultaneously, 3N+l channels are required, and they describe the

algorithms required.

For a four-channel system, the algorithm of Pease, et al., requires that the single source

and the three channels to which the information is first distributed must be independent,

so that a single fault cannot affect both the single source and any of the three channels.

The sequence of actions is:

1. The source, possibly a processor, generates or obtains the information

2. The source distributes the information to three other processors

3. The three other processors distribute their copies of the information to

whoever requires it

. A user of the information, receiving three copies of it, performs a majority

vote. If a majority exists, and only one fault is present, every working

processor will obtain the same majority. If all three values are different, a

default value must be used, and every working processor will also fail to find

a majority and will use the default.
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For the extension of this algorithm to cover more than one fault, and for the proofs, see

Pease, et al. [24].

Consider now the input of a sensor value from a replicated sensor. The sequence of
actions is:

1. The value from each of the replicated sensors is read by a processor, probably
a different processor for each sensor

. Each of the processors distributes its sensor value to at least three other

processors, and these then redistribute their values to the processors that are
to use the sensor

. A user of the sensor now has three copies of the value for each of the sensors;

using the standard interactive consistency algorithm above, the three copies

are voted to obtain a single value for each of the replicated sensors, a value

that is known to be consistent for every working processor

. The user of the sensor may now examine the sensor values for plausibility,

filter them, average them, or perform whatever other processing is required

by the application; none of this application-dependent merging of the values

from replicated sensors should be performed before interactive consistency

has been assured for each sensor value individually.

If the sensor itself were capable of recording its value at appropriate intervals and

subsequently making that value available to all processors, it might be possible to avoid

requiring a single processor to read and redistribute that value. However, the sensor

would be required to remain synchronized with the processors, and that synchronization

requires knowledge of the adaptive reconfiguration. Thus, the sensor would rapidly

become quite complex and would require a processor with its own local executive. A

much simpler design results from using the SIFT processors to read and staticize sensor
values.

In addition to the input of sensor values, there are three other places in the SIFT system

in which information from a single source might be replicated across a multichannel

system. These are:

1. The error reports to the global executive, discussed in that context

2. The resynchronization of the processors' clocks, discussed in that context

3. Information transfer from an

replicated application program,

provided for at present in SIFT.

unreplicated application program to a

currently thought to be unlikely and not
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B. SIFT EXECUTIVE SOFTWARE SPECIFICATIONS

This section is an introduction and guide to Appendix D, which presents formal

specifications for all of the SIFT executive software, except for the Interactive

Consistency and Clock Synchronization functions. The specifications are written in the

language SPECIAL, which is a component of the SRI-developed software methodology
HDM (Hierarchical Development Methodology} [27]. The present version of SPECIAL is

incapable of representing time and multiprocessing, which are essential issues in the

consistency and synchronization functions,

A brief tutorial on SPECIAL, which is extracted from a recent National Bureau of

Standards report [19], is presented in Appendix C. Perusal of that appendix will aid in
understanding the following discussion.

1. Introduction

The specification of SIFT consists of two parts: the specifications of the SIFT models

and the specifications of the SIFT PASCAL program, which actually implements the

SIFT system. The code specifications are the last of a hierarchy of models describing the
operation of the SIFT system and hence are related to the SIFT models as well as the

PASCAL program. These specifications serve to link the SIFT models to the running
program.

In order to facilitate proof of the consistency between the PASCAL program and the

code specifications, the specifications are very detailed and closely follow the form and

organization of the PASCAL code. In addition to describing each of the components of

the SIFT code, the code specifications describe the assumptions of the upper SIFT

models, which are required to prove that the code will work as specified. These

constraints are imposed primarily on the schedule tables.

Appendix D assumes an understanding of the motivation and basic algorithms of SIFT.

An acquaintance with the Hierarchical Development Methodology (HDM) and SPECIAL

is helpful but not required. This SIFT specification was written in a variant of

SPECIAL developed as part of a PASCAL code verification system. The specification is

written as a series of paragraphs with names such as TYPES and PARAMETERS.

Comments are enclosed in mS( ... )m and serve only as informal descriptions of the formal

specification. The data objects of SIFT are called VFUNs in the specification but

otherwise are identical to the variables of the SIFT program.

The code specification is not a complete description of the SIFT program. The SIFT

system consists of a number of processors all working concurrently in approximate

synchronization. The specification given in Appendix D considers only one of those

processors and contains no description of how the processors communicate or how they

maintain synchronization. Any part of the SIFT program that explicitly involves the

passage of time is outside the realm of the specification.
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The next sections will refer in detail to the SPECIAL specification of SIFT executive

software found in Appendix D.

2. The Type Declarations

The TYPES paragraph at the top of the specification declares the data types used in the

SIFT implementation as well as some types used purely for specification purposes. These

data types are very similar in meaning to da_a types used in most programming

languages such as PASCAL.

The data types are broken into sections for each major data component of SIFT. The

first data component is the schedule table whose data type is Called SCHED ARRAY.

An array of arrays, it has a component for each processor, each configuration, and each

subframe. The second component is the datafile through which the processors

communicate. The datafile type is called the DATAFILE ARRAY and has components

for each taskname and each element of the results produced by each task. The

POLL ARRAY type describes an entry for each configuration, each processor, and each

task and contains a boolean value indicating whether that task is run by that processor

in that configuration. The ERROR ARRAY type describes an array containing the

error count for each processor. The INPUT ARRAY has an element array for each
task.

Some data types are used for specification purposes and for internal processing in the

implementation. SET OF INT describes a set of integers in the usual mathematical

sense of a set. TASK ARRAY is an array of integers indexed by task name.

BOOL ARRAY is an array of boolean values.

3. The Parameter Declarations

The parameters of the specification correspond to the constant values of the

implementation. The actual values of these objects are not specified, but, instead,

sufficient constraints are placed on the possible values so that the proof will succeed.

The parameters and their meanings are given below:

frame size The number of subframes in a frame

max_processors The maximum number of processors in any configuration

my_processor The physical number of this processor

max activities The maximum number of activities allowed in any subframe

max elems The maximum number of values any task can produce
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max tasks

bottom val

err threshold

vote,dummy_

reconfig

global_ exec

error_ report

null task

sched table

poll

inputs

i C

result size

error i c

The maximum number of tasks in the system

The special value returned when a task does not run and when no

majority is found in voting

The number of error reports before a processor is considered faulty

vote, execute

The possible activities of a subframe

The name of the reconfiguration task

The name of the global executive task

The name of the error reporting task

The name of the null or maintenance task

The schedule table for each processor, configuration, and subframe,

giving a set of activities to perform

Determines whether a processor in a given configuration runs a

particular task

Gives the names of the tasks that will produce results used by a
particular task

Indicates which tasks are interactive-consistency tasks

Gives the number of values returned by each task

tasks

The names of the error-reporting, interactive-consistency tasks.

4. The Definitions

Definitions are used as a convenient way to name a concept in the specification for easy

reference. They are equivalent to pure mathematical functions in that they take a

sequence of arguments and produce a determined result. The only definition in the

specifications defines the concept of a majority of a set of values. The values being

voted on are found in the datafile corresponding to each processor that ran the task as
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indicated by the POLL. The definition comparesthe set of all processorsthat ran the
task to the set of all processorsthat agreeon the resulting value. If the secondset is
larger than half the first set, a majority value hasbeenfound.

5. The Parameter Invariants

This section of the specifications contains the constraints on the parameter values

mentioned in the above section on parameters. Some of the constraints seem very

obvious, but they must be made explicit in order for the mechanical verification effort to

succeed. Each constraint is described below (the hyphens provide for human-readable

separations of phrases, while meeting machine requirements for continuous symbol

strings in the names of variables):

1. frame_size, max_ processors, max_ activities, max_ elems, and max_ tasks

should all be positive values.

.

.

1 <-- my_processor <-- max_processors The processor number of this

processor must be a legitimate processor number.

The activities vote, dummy_vote, and execute should be positive numbers

and each should be different.

4. The tasks reconfig, global_exec, null_task, the error reporting tasks, and

the error-reporting, interactive-consistency tasks should all be different tasks,

that is, not equal to each other.

5. An execute that uses values must follow the vote or dummy_vote on those

values.

6. There is never scheduled both a vote and a dummy_vote on the results of a

task during a subframe.

7. The results of an execute are not voted on during the same subframe they are

produced.

° Reconfiguration is always the last task run in the subframe. This is because

reconfiguration completely changes the current schedule so it is not possible

to continue the old schedule.

9° No vote is scheduled during the same subframe as an error report. That is

because a vote might change the error count that the error-reporting tasks

broadcast.

10. The result of an execute is only voted on once.
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11.No task is executedmore than once in any subframe.

12. The only activities scheduledare vote, dummyvote, and schedule.

13. No other activities are scheduledafter the null task is started to fill out the
subframe.

14.The global executive only takes as input itself (the previous execution) and
the error-reporting and interactive-consistencytasks.

15.The error-reporting and interactive-consistencytasks broadcast their inputs.

16.The global executive considersa processorto be no longer working if it was
not previously working or if a majority of the other processorshave declared
it to be bad.

6. The Specification Functions

The specification functions serve two purposes. They define the names and types of the

variables that make up the state of the system, and they define the operations that

modify the state during execution. The state variables correspond to the global

PASCAL variables of the SIFT implementation and the operations of the specification

correspond to the FUNCTIONs and PROCEDUREs of the implementation. The

variables are described first, followed by the operations.

1. Subframe contains the current subframe number which ranges from 0 to one
less than the maximum number of subframes.

2. Config contains the current configuration. This is the number of processors

that are currently considered to be working.

3. Input is an array of values waiting to be input to particular tasks. They are

the result of voting on the outputs of other tasks.

4. Datafile is the broadcast area where results of tasks are placed and

automatically broadcast.

5. Errors is the number of errors counted for each processor due to

nonagreement in voting.

. Real_to_virt is a mapping from a real physical processor number to the

processor number used in the schedule tables for this configuration.

7. Virt to real is a reverse mapping of real to virt.
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The main procedureof the implementation is Dispatcher, which is invoked at the start of
eachsubframe due to a clock interrupt and which, in turn, invokes each of the activities
of that subframe. The specifications of the dispatcher describehow each of the state
variables described above is changed according to the schedule tables. The change to
eachstate variable is describedin sequence:

1. The subframe number is incremented by one, indicating that another

subframe has elapsed. If the end of the frame is reached, the subframe

number is reset to zero

. Config is changed only if a reconfiguration was done during this subframe.

Its new value corresponds to the number of processors reported working by

the global executive

. Input is changed to reflect the updated values found by voting on values

produced by tasks in other subframes. For each entry in the input table, if
no vote was done in this subframe on the value, then the value remains

unchanged. If there was a vote, the new input value corresponds to the

majority value computed by the vote

. The entries in the datafile are updated when tasks broadcast their results. If

a task did not run during this subframe, then its old values from the previous

subframe remain. If the task did run, its output values are placed in the

datafile

5. If any voting found less than total agreement, then the error counts were

incremented by the number of nonagreements found

6. If a reconfiguration was done, the variables real to virt and virt to real

were correctly updated to reflect the new processor configuration.

The dispatcher calls a variety of other routines to perform the activities. The

Vote_activity routine conducts a vote by collecting the values to be voted on and

calling the three way voter VOTE3. Dummy_vote just replaces the old values by the

special value. The global executive counts up the error reports and decides which

processors are running. The reconfiguration task uses the results of the global executive

to reconfigure the system. Since the actual application tasks runnil/g0n the SIFT

computer are not known for this proof exercise, a general routine representing all of the

possible application tasks is included.

C. PASCAL CODE FOR THE VOTER

The following is a PASCAL code for the voter, presented as an example of the software

that makes up the SIFT operating system. The actual voter may differ in slight details.

The code has been designed without loops, in order to provide for the fastest possible

execution of this important function.
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vat errors:srray[O..7] of integer;

pl, p2, p3, p4, pS, vl, v2, v3, v4, v5 : integer;

procedure fail;

begin

(* All returned values are wrong, so report all

processors involved. This could be done
in line, but it would take too much room.

The minor additional time that it takes to

call the subroutine is probably worthwhile. *)

errors [pl] .=errors [pi] +1;

errors [p2] :=errors [p2] +1 ;

errors [p3] :=errors [p3] +1;

errors [p4] : =errors [p4] +1;

errors [p5] :=errors [pS] +1

end;

function voteS(default:integer) : integer;

begin

(* This ie the five way voter. It assumes that

VI .. V5 is initialized with the 5 values to

be voted, and Pl .. P5 has the corresponding

processors. Default is returned in the case

that there is no majority value. The

procedure is basically a simple IF tree

(pruned where possible) to achieve the

quickest possible vote. *)
if vl=v2 then

if vl=v3 then

begin

if vl<>v4 then errors [p4] :=errors [p4] +l;

if vl<>v5 then errors[p5] :=errors[pS]+l;
vote5 := vl

end

else if v2=v4 then

begin

errors [p3] :=errors [p3] +1;

if vl<>v5 then errors [pS] : =errors [p5] ÷1;
vote5 := vl

end

else if vl=v5 then
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begin

errors [p3] :=errors [p3] +1;

errors [p4] :=errors [p4] +I;

vote5 := vl

end

else if v3=v4 then

if v3=v5 then

begin

errors [pl] : =errors [pl] +I ;

errors [p2] :=errors [p2] +1;

vote5 := v3

end

else

begin

fail;

vote5 : =default

end

else

begin

fail;

vo_e5 : =default

end

else if vl=v3 then

if vl=v4 then

begin

errors [p2] :=errors [p2] +1;

if vl<>v5 then

errors [pS] :=errors [pS] +1;

vote5 := vl

end

else if vl=v5 then

begin

errors [p2] :=errors [p2] +1;

errors [p4] :=errors [p4] ÷1 ;
vote5 := vl

end

else if v2=v4 then

if v2=v5 then

begin

errors [pl] :=errors [pl]+I;

errors [p3] :=errors [p3]+I;

vote5 :=v2

end

else

begin
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else

else

else

fail;

voteS:=default

end

begin

fail;

vote5 :=default

end

if v4=v5 then

if v2=v4 then

begin

errors [pl] :=errors [pl]+1;

if v2<>v3 then

errors [p3] "=errors [p3] +1;
vote5 := v2

end

else if vl=v5 then

begin

errors [p2] :=errors [p2] +I ;

errors [p3] :=errors [p3] +1 ;
votes := vl

end

else if v3=v5 then

begin

errors [pl] "=errors [pl] +1;

errors [p2] "=errors [p2] +1 ;
vote5 := v3

end

else

begin

fail;

vote5: =default

end

if v2=v5 then

if v2=v3 then

begin

errors [pl] "=errors [pl] +1 ;

errors [p4] •=errors [p4] +1;
vote5 := v2 •

end

else

begin

fail;

voteS:=default

end
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else if v2=v3 then

If v2=v4 then

begin

errors [pl] "=errors [pl] +I;

errors [p5] : =errors [pS] +I;

vote5 := v2

end

else

else

end;

begin

fail;

vote8 :=default

end

begin

fail;

vote5:=default

end

function vote3(default'integer) "integer;

begin

(* This is the 3 way voter. It assumes that
V1 .. V3 contains the 3 values to be

voted, and that P1 .. P3 contains the

processors. *)
if el=v2 then

begin

if vl<>v3 then errors[p3] "=errors[p3]+1;

vote3:=vl

end

else if el=v3 then

begin

errors [p2] :=errors [p2] +1 ;
vote3 : =vl

end

else if v2=v3 then

begin

errors [pl] "=errors [pl] +1 ;
vote3 :=v2

end

else

begin

errors [pl] "=errors [pl] +1 ;

errors [p2] "=errors [p2] +1 ;

errors [p3] "=errors [p3] +1;
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end.

votea:=default
end
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IV. Validation and Verification

This chapter presents results on the analysis of SIFT system reliability. The first part is

concerned with the structure and implications of a Markov-type reliability model of

fault-tolerant behavior under permanent and transient fault conditions. Standard

analysis methods are used, but special issues arise dealing with the complexities of

transient behavior.

The second part is concerned with the validation of the reliability model ..... This is

accomplished by verifying that the actual design and implementation of the SIFT system

are consistent with the model. The verification consists of a formal (i.e., mathematical)

proof of correctness, using techniques hitherto employed in program proving. The

present application to computer system verification is novel, and is intended to have

general applicability to reconfigurable fault-tolerant computer systems.

A. THE MARKOV RELIABILITY MODEL

A sufficiently catastrophic sequence of component failures will cause any system to fail.

The SIFT system is designed to be immune to certain likely sequences of failures. To

guarantee that SIFT meets its reliability goals, we must show that the probability of a

more catastrophic sequence of failures is sufficiently small.

The reliability goal of the SIFT system is to achieve a high probability of survival for a

short period of time--e.g., a ten-hour flight--rather than a large mean time before failure

(MTBF). For a flight of duration T, survival will occur unless certain combinations of

fault events occur within the interval T or have already occurred prior to the interval T

and were undetected by the initial checkout of the system. Operationally, faults of the

latter type are indistinguishable from faults that occur during the interval T.

To estimate the probability of system failure, we have developed two finite-state

Markov-like reliability models in which the state transitions are caused by the events of

fault occurrence, fault detection, and fault *handling. ° The combined probability of all

event sequences that lead to a failed state is the system failure probability. A design

goal for SIFT is to achieve a failure rate of less than 10.9 for a ten-hour period.

For the reliability model, we assume that hardware fault events and electrical transient

fault events are uncorrelated and exponentially distributed in time (constant failure

rates). These assumptions are believed to be accurate for hardware faults because the

physical design of the system prevents fault propagation between functional units

(processors and buses) and because a multiple fault within one functional unit is no more

serious than a single fault. The first model assumes that all faults are permanent (for

the duration of the flight), so it does not consider transient faults. The second model

extends this analysis to include the effects of transient faults. Failure rates for hardware
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have been estimated on the basis of active component counts, using typical reliability

figures for similar hardware.

For the first model we let the state of the system be represented in the reliability model

as a triple of integers (h,d,f) with f')d_h, where such a state represents a situation in

which f faults of individual processors have occurred, d of those faults have been

detected, and h of these detected faults have been Utoleratedm by reconfiguration. There

are three types of possible state transition.

1. (h,d,.f)---_(h,d,f+l), representing a fault in a processor

2. (h,d,f)_(h,d+l,.f),d_f, representing the detection of a fault

3. (h,d,f)-,(h+l,d,f)h_d, representing the tolerating of a detected fault.

This is illustrated in Figure IV-1.

The first two types of transition-processor fault and fault detection, represented in

Figure IV-1 by arrows--are assumed to have constant probabilities per unit time.

However, the third type of transition--failure tolerating, represented in Figure IV-1 by

vertical arrows--represents the completion of a reallocation procedure. We assume that

this transition must occur within some fixed length of time r.

A state (h,d,f) with h(d represents a situation in which the system is reconfiguring. To

make the system immune to an additional fault while in this state is a difficult problem,

since it means that the procedure to reconfigure around a fault must work despite an

additional, undetected fault. Rather than assuming that this problem could be solved,

we took the approach of trying to ensure that the time r that the system remains in such

a state is small enough to make it highly unlikely for an additional fault to occur before

reconfiguration is completed. We therefore made the pessimistic assumption that a

processor fault that occurs while the system is reconfiguring will cause a system failure.

Such failures are represented by the Udouble-faultU transitions indicated by asterisks in

Figure IV-I. In this module, which assumes three way voting, we assume that each of

these transitions results in a system failure.

We have calculated the probability of system failure through a double fault transition,

and also through reaching a state with fewer than two nonfaulty processors, for which

we say that the system has failed because it has Urun out of spares, u* A brief summary

of these failure probabilities for a five processor system is shown in Table IV-1.

The first model indicates that the exhaustion of spares was not a significant failure mode

*The probability of system failure because of multiple undetected faults has not been computed
precisely, but is expected to be comparable to the double fault values.
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Transitions:

ft fault occurence

fd fault detection /f_

fh fault handling
* double fault

fd

fh

FIGURE IV-1 INITIAL RELIABILITY MODEL
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Table IV-1

FAILURE PROBABILITY FOR VARIOUS CAUSES

FAILURE CAUSE

Exhaustion of spares

Double Fault (T = 100 ms)

Double Fault (T = ls)

FAILURE PROBABILITY

5 x 10 -12

7 x 10 -11

7 x 10 -10

T = 10 hours

in comparison to the occurrence of a second fault before completion of the

reconfiguration for a first fault, but superficial calculation indicates that coincidences

between transient faults, or between transient faults and reconfigurations from solid

faults, might also be significant failure modes. Consequently, a second reliability model,

considering both solid and transient faults, has been constructed. This model will be

used as a high-level specification of SIFT fault-tolerant behavior for the purpose of
verifying the SIFT design.

Since the old model did not consider transient faults, the global executive must either

regard transient faults as solid, with a risk of exhaustion of spares, or else must be

proven able to recognize and ignore transient faults, which presents an almost impossible

proof. A Markov model that represents both solid and transient faults, with appropriate

probabilities for correct and incorrect recognition of them, allows the global executive to

be designed in a more natural and effective manner while still remaining provable.

The second Markov model consists essentially of the addition of transient errors to the

previous Markov model for SIFT. The previous model consisted of a two-dimensional

matrix of states, and the addition of transient errors converts this into three dimensions.
The three indices into the state matrix are:

1. The number of processors that have been removed from the configuration by
reconfiguration

2. The number of processors that have developed solid faults

3. The number of processors that have developed transient faults, and for which

the error symptoms of those transient faults are still under consideration by
the global executive.
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Figure IV-2 shows an example of projecting the model into the plane of the first two

indices. The resulting model is clearly very similar to the previous model with the

addition of the transitions caused by the incorrect diagnosis of a transient-fault symptom

resulting in the conclusion that the transient fault was solid; this, of course, results in the

reconfiguration of a working processor out of the system.

Figure W-3 shows a set of states and transitions resulting from transient errors for one of

the states of Figure IV-2. This rather complex diagram results from considering up to
three successive transient faults.

Note the transitions from {a,b,1) to (d} and from (d} to (a,b,2). The first of these

transitions represents the rate of occurrence of transient faults, while the second

represents the rate at which the errors due to transient faults are masked by voting and

removed from the system. Typically, errors due to transient faults are masked at the

end of the iteration in which the fault occurs. Before the error is masked, the system is

vulnerable to further faults, solid or transient. Once the masking has occurred and the

fault no longer constitutes a direct risk to the system, the symptoms of the fault remain

to be diagnosed by the global executive. To facilitate the analytic reduction of this

model, discussed below, the possibility of a solid fault occurring while in state d is

neglected, and thus no transition for such a fault is depicted. This has a negligible effect

on the results because of the relatively slow rate of occurrence of solid faults.

The transition (d} to (k} represents the rate of occurrence of a second transient fault

before the errors due to the first are fully masked, and that from (k) to (r) represents a

third transient fault occurring before even the first is masked out. In contrast, the

transition (a,b,1} to (m) represents a second transient fault occurring after the first has

been masked but before its symptoms have been considered by the global executive.

Thus states (d), (m), and (t) are states with errors due to one transient fault to hazard

the system, states (k) and (s) are states with errors due to two transient faults, and state

(r) has errors due to three transient faults and, thus, is a state with a high risk of system

failure. States {a,b,0}, (a,b,1}, (a,b,2}, and (a,b,3} are states with no unmasked errors due
to transient faults. In all cases the effect of solid faults must be considered with the

errors due to transient faults to determine the risk of system failure, and thus the failure-

rate transitions are not shown on Figure IV-3.

Consider next the transition (a,b,1) to (e) and the states (e), (f), and (g}. The transition

(a,b,l} to (e) represents the rate at which the global executive is able to diagnose the

symptoms of a single fault and to reconfigure the system accordingly. States (e}, (f}, and

(g) are used only to distinguish the possible decisions made by the global executive, and

thus do not represent states of significant occupancy in the Markov model. This is

achieved by attaching a very fast transition rate, called "fast," to each of them. The

ratio of their transition rates determines the probabilities of the various decisions.

Transitions (e} to (f} and (e) to (g), respectively, represent the probability that the global

executive considers a transient-fault symptom or a solid-fault symptom. The model
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@

@
FA I LE D STATE

@

SOLID FAULT

OCCURRENCE

LOSS OF A GOOD PROCESSOR
BECAUSE A TRANSIENT FAULT

RECONFIGURATION IS THOUGHT TO BE SOLID
OF A SOLID FAULT

OUT OF THE SYSTEM

FIGURE IV-2 THE STATES OF THE NEW MARKOV MODEL FOR A 5 PROCESSOR

SYSTEM, PROJECTED INTO THE PLANE OF THE FIRST TWO INDICES,

AND THUS NOT SHOWING TRANSIENT ERROR STATES.

The first index denotes the number of processors that have been removed from the

system by reconfiguration, and the second index denotes the number of processors

suffering from solid faults.
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FIGURE IV-3 A SET OF STATES AND TRANSITIONS RESULTING FROM TRANSIENT
ERRORS FOR ONE OF THE STATES OF FIGURE IV'2
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assumes that fault symptoms are considered singly and that every outstanding fault has

an equal chance of consideration.

For each fault considered, the global executive may correctly recognize the nature of the

fault, or it may mistake a transient fault for a solid fault or vice versa. The model

allows the user to define the probability of correctly recognizing a fault as a function of

the number of faults outstanding. It is to be expected that a design for the global

executive that reduces the risk of interpreting a transient fault as solid, with the

resulting loss of a processor, will correspondingly increase the risk that a solid-fault

symptom will be regarded as transient and will thus be ignored for a longer time.

If the global executive considers a transient fault and correctly identifies it, the transition

is (f) to (a,b,0), If the global executive considers a solid fault and correctly identifies it,

reconfiguring the system, the transition is (g) to (a+l,b,2), while, if the executive

incorrectly regards it as a transient fault and ignores it, the transition is (g) to (a,b,1).

While the global executive is considering the fault symptoms, further faults may occur.

These are represented by (a,b,1) to (a,b+l,1) for a solid fault, and by (a,b,l) to (m) for a
transient fault.

In practice the states of Figure IV-3 are more than are needed for the analysis of the

system. They can be reduced to a set of equivalent states and transitions shown in

Figure IV-4. The validity of this transformation is based on the large ratio of fault rate

to reconfiguration rate for the various fault types.

Table IV-2 shows the rates for transitions in Figure IV-3, while Table IV-3 shows the

corresponding rates for the reduced system of Figure IV-4. Table IV-4 gives the

meanings of the symbols used in the rate tables.

Sample Results from the Model

These sample results from the model are not intended to predict the actual reliability of

SIFT. The parameters fed into the model for these sample results cannot be regarded as

"considered representations" of SIFT component reliability or performance, and, thus,

one should not regard the results as predictive of SIFT reliability. By appropriate (or

inappropriate) choice of parameters, any reliability whatever could have been obtained
from the model.

These sample results are, however, useful for

• Illustrating the capabilities of the model

• Demonstrating the sensitivity of system reliability to changes in the various

parameters
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Table IV-2: The transition rates between the states of Figure IV-3

a,b,0
a,b,0
a,b,O
d
d
d
a,b,1
a,b,1
a,b,1
a,b,1
e

e

f
f

g
g
k
k
k
m
m
m
a,b,2
a,b,2
a,b,2
a,b,2
n

n

P
P
q
q
1"

r

s

8

t
t

a,b,3
a,b,3
a,b,3
U

U

V

g

w

w

_> a,b+l,0 (N-b)X
=> d (N-b)#
_---> railed if F<2(b-a) then fast else O
---->a,b,1 _b
_> k (N-b-1)p
-_> failed if F<2(b-a)+2 then fast else O
-----> a,b+l,1 (N-b)X
_>e 0
----> m (N-b)#
-----> failed if F<2(b-a) then fast else O
----> f (a/(b-a+l))fast
----> g ((b-a)/(b-a+l))fast
----> a,b,0 ( l-Q( b-a+ 1))fast
2> a+l,b+l,0 (Q(b-a+l))fast
=_> a,b,1 (P(b-a;1))fast
----> a+l,b,0 (1-P(b-a+l))fast
--> a,b,2 _b
--> r (N-b-2)#
2> failed is F<2(b-a)+4 then fast else O
2> a,b,2 _b
------> s (N-b-1)p
----> failed if F<2(b-a)+2 then fast else O
2> a,b+l,2 (N-b)X
-->n O
2> t (N-b)#
-----> failed if F<2(b-a) then fast else O
2> p (2/( a+2))fast
-----> q ((b-a)/(b-a+2))fast
-----> a,b,1 (1-Q(b-a+2))fast
----> a+l,b+l,1 (Q(b-a+2))fast
----> a+l,b,2 (P(b-a+2))fast
-----> a,b,2 (1-P(b-a+2))fast
----_> a,b,3 _b
----> failed if F<2(b-a)+6 then fast else O
--> a,b,3
--_> failed if F<2(b-a)+4 then fast else O
==> a,b,3 _b
==> failed if F<2(b-a)+2 then fast else O
--> a,b+l,3 (N-b)X
_>u 0

---_> failed if F<2(b-a) then fast else O
= > v (3/(b-a+3))fast
= > w ((b-a)/(b-a+3))fast
==> a,b,2 (1-Q(b-a+3))fast
----> a+l,b+l,2 (Q(b-a+3))fast
----> a+l,b,3 (P(b-a+3))fast
----> a,h,3 (1-e(b+a+3))fast
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(a-l, b, 0)

(a, b+l, 1 )

(a, b+l, 2)

\
\

(a, b+l, 3)

SELF-LOOP TRANSITIONS AND TRANSITIONS
TO THE FAILED STATE ARE NOT REPRESENTED

ON THIS FIGURE.

(a+l, b, 3) (a+l, b, 0)

(a+l, b+l, 0)

(a+l, b+l, 1 )

(a+l, b+l, 2)

FIGURE IV--4 A REDUCED SET OF EQUIVALENT STATES AND TRANSITIONS
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a,b,c

3,b,c

ayh,c

a,b.c
a,b,c
a,b,c
a,b,c

Table IV-3:

----> failed

_> a,b,c+l
_> a,b,c+2
_> a,b+l,c

> a+l,b,c
==> a,b,c-1
_> a+l,b+l,c-1

Table IV-4:

Symbol

N

F

P

fast

P(x)

q(x)

A set of transition rates appropriate to the reduced

set of states shown in Figure IV-4.

if F < 2(b-a) then fast
elseif F <2(b-a)+2 then (N-b)#
elseif F<2(b-a)+4 then (N-b)(N-b-IX/_ *2)/_b
else (N-b)(N-b- 1)(N-b-2)(p*3)/(_b* 2)
(N-b),
(N-b)(N-b-1)p
(N-b))_
e(b-a+c)X*((b-a)/(b-a+c))

The meanings of symbols used in the rates of
Tables IV-2 and IV-3

Meaning

The number of processors in the configuration

if(N-a)>5 then 5

elseif(N-_)__3 then 3
elseI

The rate of solid fault occurrence

in a single processor

The rate of transient fault occurrence

in a single processor

The rate of reconfiguration

The rate of masking of transient errors

> > max (0,_b)

The probability of correctly diagnosing a solid
fault in the presence of x solid fault
or transient fault symptoms

The probability of incorrectly diagnosing a transient
fault, and of regarding it as a solid fault,
in the presence of x solid or transient fault symptoms.
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• Showing target values for component reliability if a SIFT-like system is to

meet its reliability goals.

To exercise the model, we have assumed a "standard" set of parameters for the SIFT

system. Many of the results exhibited here involve varying one or more of these

parameters; the graphs explicitly indicate the parameters that have been varied. Other

parameters will remain at their standard values, which are:

Number of Processors 5

Number of Processors Voting

Mission Duration

Rate of Solid Faults

Rate of Transient Faults

Rate of Intermittent Faults

Reconfiguration Time

5 on global executive

3 on flight control tasks

10 hours

2.0xl0"4/hour

2.0xl0-3/hour

0.0/hour

10-4 hour

Again, these are illustrative values, and no representation is made that these are the

correct values for SIFT.

Figure IV-5 shows how the reliability of the example system depends on the number of

processors in the system.

Results are given for both (1) the case where all critical tasks are replicated three ways

and three-fold voting is used to mask errors, and (2) the case where the global executive

uses five-fold replication and voting. The difference between the reliability of these two

cases is largely due to transient faults closely spaced in time, where the second fault

occurs before the first fault can be fully masked, thus exposing the system to a risk of

failure. It can be seen that, with inadequate replication and masking, there is a limit to

the level of reliability attainable, and that the addition of further processors may

degrade rather than improve reliability.

It is possible to design most of the flight-control application programs to be self

stabilizing and thus relatively invulnerable to transient disturbances, particularly with

the substantial inertia of commercial transport aircraft. Consequently, three way voting

should suffice for flight-control programs. No such method has been found for the global

executive. Certain portions of the flight-control application have characteristics similar

to the global executive, particularly the flight-phase logic, and may need similar
treatment.
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Figure IV-6 shows the probability of system failure during missions of various durations.

The figure shows this probability both for the reference case where the global executive

uses five-way voting, and also for three-way voting on the global executive. Again, the

effect on reliability of transient errors closely spaced in time is evident. Without five-

way voting on critical tasks, the required reliability is not achieved even for quite short
flight durations.

The three-processor, 40-second mission case was included for its relevance to the

requirements on automatic landing systems, such as those included in current aircraft.

Figure IV-7 shows the dependence of reliability on the solid fault rate. It is assumed, for
these results, that the transient fault rate is ten times the solid-fault rate. It is evident

that the dependence of reliability on fault rate is very steep and that the assumed

processor reliability of 2.0x10 E-4/hour is just barely adequate with five processors and

five-way voting for critical tasks such as the global executive. However, substantial

improvements in reliability can be expected from improved VLSI technology over the

next few years. Such improvements in processor reliability will have an impressive effect
on system reliability.

Figure IV-8 investigates the sensitivity of system reliability to the transient-fault rate.

Very little solid information is available about the rate of transient faults under realistic

conditions. The dependence of reliability on transient-fault rate is really a dependence

on the ratio between the transient-fault rate and the error-masking rate. Thus a faster

fault masking time would have the same effect as a corresponding reduction in transient
fault rate.

Figure IV-9 displays the effect on reliability of erroneous diagnosis of fault symptoms by

the global executive. To the right of the graph are two curves that show the effect of

mistaking a solid fault as a transient, and thus of ignoring it. The fault, being solid, will,

of course, continue to generate errors, and will thus be subjected to further attempts at
diagnosis, which may correctly recognize it as a solid fault. The effect is thus one Of

lengthening the reconfiguration time. It can be seen that, with five-way voting of critical

tasks, the system has ample error-masking capacity and is not very sensitive to

reconfiguration time or to mistaken diagnoses that lengthen the reconfiguration time. In

contrast, a three-way voted system, with less error masking, is quite sensitive to the
effect of such mistakes.

To the left of Figure IV-9 are two curves that show the effect of mistakenly regarding a

transient fault as solid, and thus of discarding a working processor prematurely. It can

be seen that, with five-way voting of critical tasks, where exhaustion of spare processors

is a primary failure mode, the effect of such mistakes is significant, and a very high level

of discrimination between transient and solid faults is required. For a three-way voted
system, the primary failure mode is the coincidence of transient faults rather than

exhaustion of spares, and thus a moderate rate of mistakenly regarding a transient fault
as solid is not significant.
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These results have a significant effect on the design of the global executive. In a system

using five-way voting for critical tasks, the global executive should be reluctant to

diagnose a fault as solid while there is any chance that it is transient. Such an executive

will wait until the fault has persisted for perhaps as much as 200ms, and many error

reports have been received, before concluding that the fault must be solid and that the

processor must be discarded. A system using only three-way voting must react much

more quickly to faults because of its more limited error-masking capacity. Consequently,

the design for the global executive must be willing to accept a rather higher rate of

mistakenly regarding transient faults as solid.

Figure IV-10 analyzes the probability that failed processors in a flight-control system will

prevent departure of a flight until the failed processors are replaced or repaired. These

results are compared with results for FTMP published in Hopkins [12]. Dispatch failure

probability is particularly important for longer international flights involving

destinations at which full sets of spare parts may not be available.

It can be seen that, with five processors required for dispatch, a system containing only

five processors would incur a significant risk of dispatch failure. But inclusion of a sixth

processor reduces the risk to acceptable levels, and a seventh processor should provide

ample margin for even the most protracted international routes. These results are

generally comparable to those for FTMP when allowance is made for the higher number

of processors required for dispatch using FTMP.
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B. The Hierarchical Specification and Mechanical Verification of the SIFT

Design

This section describes the formal specification and proof methodology employed to demon-

strate that the SIFT computer system meets its requirements. The hierarchy of design

specifications is shown, from very abstract descriptions of system function down to the

implementation. The most abstract design specifications are simple and easy to under-

stand, almost all details of the realization having been abstracted out, and can be used

to ensure that the system functions reliably and as intended. A succession of lower-level

specifications refines these specifications into more detailed, and more complex, views of

the system design, culminating in the Pascal implementation. The section describes the

rigorous mechanical proof that the abstract specifications are satisfied by the actual im-

plementation.

1. The Role of Formal Proof

The extreme reliability requirement on SIFT imposes a very severe problem in substan-

tiating the achievement of that level of reliability. At the required reliability, a mere

observation, even of a large number of systems, will be ineffective. Further, a SIFT system

must be able to recover successfully from several million faults for every allowable system

failure, and must, therefore, be able to recover from quite improbable and unforeseen faults

and even combinations of faults. Thus validation by fault injection, while necessary, is

unlikely to convince us that SIFT meets its reliability requirements.

The justification that SIFT meets the reliability requirement must be based on an ex-

trapolation from fault rates that are easier to measure, such as those for an individual

processor. For SIFT, this extrapolation takes the form of a discrete Markov analysis,

with the numbers of working and faulty processors defining the states and the fault and

reconfiguration rates defining the transitions. The validity of this extrapolation depends

on a number of assumptions, and, at the desired level of reliability, even "minor" viola-

tions of the assumptions can have significant effects on the reliability achieved. Thus the

assumptions must, themselves, be quite rigorously substantiated if the claimed reliability

is to be believed. For instance, one important assumption of the Markov analysis is that

the occurrence of faults is well described by a Poisson model with complete independence

between processors. Much of the electronic and mechanical design of SIFT is intended to

maintain this independence.

The validity of the Markov analysis depends also on the assumption that the states and the

transitions of the Markov model correspond accurately to the actual system, and that the

states in which system failure is possible are correctly identified. But this correspondence is

far from obvious, for the actual system has very many states with many complex transitions

between them, and the correspondence must be maintained even when one or more of
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the processorshassuffereda fault. In SIFT, this correspondenceis basedon a predicate
system safe indicating that the replication of eachof the tasks is sufficient so that the
voting canmask the effectsof the faults presentin the system.The validation of SIFT now
consistsof two parts. The first of these is a demonstration that, so long assystem safe
is true, the system performs the desired flight-control function, eventhough one or more
processorsmay be faulty. This is a correctnessproperty for the function performedby the
system. The secondis a demonstration that the Markov analysiscomputesan upper bound
on the probability that system safe becomesfalse. This is a correctnessproperty for the
probabilistic reliability analysisof the system. Becauseeven a very small defect in the
demonstrations could allow failures at an unacceptablerate, thesedemonstrations must
be performed with the rigor of mathematical proof, In this paper we consideronly the
first of theseparts. An outline of the probabilistic reliability analysisis given in Wensley
[32].

The necessityfor formal mathematical proof to ensurethat SIFT meetsthe desiredfunc-
tional and reliability requirementspresentstwo major issues:

_.How doesonedefinethe criteria sufficient to ensurethe correct functioning of the system?

_,How doesone prove that the criteria aresatisfied by the actual system?

The first issueis crucial if the formal verification effort is to haveany practical significance.
Onemust have confidence,evenas a noncomputer scientist, that the formal specifications
stating what is meant by the correct functioning of the system in fact reflect the in-

tended behavior. That a formal specification expresses what the system designer intui-

tively means must, in the end, be determined by inspection. A formal specification must

therefore be believable if rigorous mathematical correspondence to the specification is to

ensure the desired effect. The larger and more complex the system, the more acute the

problem becomes. Specifications reflecting the detailed behavior of the system allow the

most straightforward formal verification effort, but it is difficult to ensure that low-level

specifications embody what is meant by the proper functioning of the system. Very high-

level specifications, abstracting from the details of the system, are necessary if we are

to state the overall functional and fault-tolerance properties of the system in a way that

can be understood and believed. The problem then becomes one of reconciling the very

high-level specifications with the detailed transformations performed by the programs of

the actual system.

In order to state high-level system specifications that can be shown to be consistent with

the actual program, one must formulate not just a single specification of the system, but

a hierarchy of specifications. Our approach is to state a tiered set of system specifications,

as illustrated in Figure IV-II.

Each level Li in the hierarchy specifies an abstract view of the system in terms of a set

of primitive predicates Pi and functions Fi. The specification for the model is given by

a set of axioms, characterizing those properties of the model appropriate for that level
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of system abstraction. At each level in the hierarchy, a specification Li can be seen as

an abstraction of the previous level Li+l. Correspondence between successive levels is

done by expressing each primitive function and predicate of higher-level Li in terms of the

functions and predicates of the lower-level Li+l. With this mapping, one must then prove

that each property derivable from the higher-level specification can be proved from the

lower-level specification. The mapping between levels need not be complete; the mapping

itself may be given as a set of axioms, saying only enough about the correspondence to

derive the necessary axioms of the higher level as theorems from the axioms •of the lower-

level. It is required only that the mapping axioms be consistent, i.e., that there exist

a complete functional mapping between levels that satisifies the mapping axioms. By

demonstrating the correspondence between successive levels Li and Li+l, one can conclude

by induction that any property provable from the highest-level specification is also provable

from the lowest-level specification. Thus, any analysis of the system based on a higher level

specification in the hierarchy is valid and could have been performed on the lowest-level

system specification.

Within the hierarchy, the lowest-level specification of the system is the actual SIFT system

executed by the hardware, while the highest-level specification reflects the intended overall

function performed by the fault-tolerant system. The higher-level specifications represent,

in effect, system requirements, stating properties to be possessed without defining method

of attainment. As one moves down the hierarchy, each lower-level specification successively

introduces additional mechanism in the design specification to achieve the fault-tolerance

and expresses a more detailed and operational view of system transformation. Between

successive specification levels, one can perform incremental design verification, proving

that the more detailed design specification at the lower level supports the abstracted view

at the higher level. By gradually introducing the algorithms used to achieve fault-tolerance,

one can verify each aspect of the design at the highest level of abstraction containing the

necessary concepts.

As an example, one can prove that replication and majority voting serve to mask faults,

using a specification of the system as a single (and therefore synchronous) global object.

Having proven this paradigm with respect to that specification level, one can then define a

lower-level specification of the system as a distributed asynchronous system with a broad-

cast communication interface. It is then required to exhibit a mapping from the distributed

system view to the global system view at the higher specification level. Demonstration

that each axiom of the global-state specification is provable from the axioms defining the

distributed-state specification will ensure that any theorems about fault masking in the

global-system view are valid for the distributed-system view as well. Thus the paradigm

of fault masking through task replication is introduced and validated prior to introducing

techniques for fault isolation through distribution of resources.
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2. Mechanized Specification and Verification

Attempting to formally characterize and justify the design of any real system is complex

and tedious. Without mechanical aids for constructing formal specifications and rigorously

enforcing sound proofs, this task would be completely impractical and would not produce

a credible result. Our early experience in formulating formal "paper" specifications and

giving informal mathematical arguments of correctness was fraught with specification

ambiguity and oversights in the informal correctness proofs. In response to this, and our

desire to mechanize the style of specification and verification employed in our previous

"paper" attempts, a new mechanical verification system was designed and implemented.

STP [29] is an implemented system supporting specification and verification of theories.

As implemented, STP did not contain a parser for SPECIAL, and thus, for this verification

the specifications were expressed in the LISP-like internal representation of STP. The logic

of STP is an extension of a multisorted (strongly-typed) first-order logic. The logic includes

type parameterization and type hierarchies. STP support includes syntactic type checking

and proof components as part of an interactive environment for developing and managing

theories in the logic. At the core of the system is a fast, complete decision procedure [28]

for a quantifier-free theory of (Presburger-like) arithmetic. The user of the system can

introduce new types and function symbols, with the semantics specified through a set of

first-order axioms. By providing aid to the theorem prover in the form of selection of

appropriate instances of axioms and lemmas, the user raises the level of competence of the

prover to the full first-order theory specified. A fundamental characteristic of the system

is that the user need know no details of the theorem prover itself; the system forms a

complete mechanization of a simply-characterized theory. As a result of a successful proof

attempt using STP, one obtains the sequence of axioms and intermediate lemmas, together

with their necessary instantiations, which lead to the theorem. The system automatically

keeps track of which formulas have been proved and which have not, so that the user is

not forced to prove lemmas in advance of use. The system also monitors the incremental

introduction and modification of specifications to monitor soundness.

3. An Outline of the Specification Hierarchy

Figure IV-12 shows an outline of the various specifications and analyses that are used in

the justification of the reliability of SIFT. Before the individual specifications are described

in detail, we give a description of their intent and interaction. On the right of the figure

is a hierarchy of specifications of the correct functional behavior of SIFT, while on the

left is a set of analyses that yield the probability of that correct behavior. The models

at the bottom of the figure describe the hardware of SIFT, upon which the more abstract

analysis is based.
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The lO Specification, the most abstract functional description of the system,assertsthat,
in a safe configuration, the result of a task computation will be the effect of applying its

designated mathematical function to the results of its designated set of input tasks, and

that this result will be obtained within a real-time constraint. Each task of the system

is defined to have been performed correctly, with no specification of how this is achieved.

The model has no concept of processor (thus no representation of replication of tasks or

voting on results), and of course no representation of asynchrony among processors. The

specification of this model contains only 8 axioms and is intended to be understandable by

an informed aircraft flight control-engineer.

The Replication Specification elaborates upon the IO Specification by introducing the con-

cept of processor, and can therefore describe the replication of tasks and their allocation

to processors, voting on the results of these replicated tasks, and reconfiguring to accom-

modate faulty processors. The specification defines the results of a task instance on a

working processor based on voted inputs, without defining any schedule of execution or

processor communication. This model is expressed in terms of a global system state and

system time.

The Activity Specification develops the design into a fully distributed system in which

each processor has access only to local information. Each processor has a local clock

and a broadcast communication interface and buffers. The asynchrony among processors

and its effect upon communication is modeled. The specification explicitly defines each

processor's independent information about the configuration and the appropriate schedule

of activities. The schedule of activities defines the sequence of task executions and votes

necessary to generate task results within the required computation window. The Activity

Specification is the lowest level description of the complete multiprocessor SIFT system.

The PrePost Specification consists of specifications for the operating system for a single

processor. The specification, in terms of pre-condition/post-condition pairs, facilitates the

use of sequential proof techniques to prove properties of the Pascal-based operating system

as a sequential program. These specifications are very close to the Pascal programs, and

essentially require the programs to "do what they do".

The various programs that form the SIFT executive are written in Pascal and form the

Pascal Implementation, from which is derived by compilation the BDX930 Implementation.

This is the lowest level specification of the SIFT software.

The functional behavior described by the I/0 Model is assured only so long as the predicate

system safe remains true. The analyses shown on the left of Figure IV-12 provide the

probability that system safe will remain true and hence that the desired functional

behavior will continue.

In the remainder of the paper, we present details of the specifications comprising the SIFT

design hierarchy. Unless otherwise noted, all specifications and mappings are taken from

actual system specifications and completed proofs. For pedagogical purposes, we have used
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a syntactic transliteration of the actual form of the specifications. The STP system forced

all user interaction to use a LISP-like prefix notation; we have transformed this into more

common mathematical notation.

The mechanical proof of consistency between the various levels of specification and further

details of its derivation are contained in [21].

4. Input/Output Specification

The Input/Output Specification of SIFTI the highest level specifying functional behavior,

defines the input/output characteristics of tasks performed by SIFT. The specification

defines the configuration of system tasks and expresses the flow of information between

tasks. Based on an abstract notion of time, which may be interpreted as subframe t_me, we

refer to iterations of a task taking place during various time intervals. The time interval

for a particular iteration of a task is referred to as its execution window, having a begining

time and an ending time. Each task is defined to use as inputs the values produced by

its input tasks and produces one or more outputs during its execution window. Based on

a high-level predicate specifying whether a task is safe during a particular iteration of a

task, the specification defines that a task which is safe during an iteration will produce

exactly one output value, computed as a function of its input values. Provided that the

entire system is safe throughout some interval (i.e., that all tasks are safe for that interval),

we can prove by induction that all tasks will compute correct functions of their intended

inputs. This defines at a high level what it means for SIFT to function correctly.

Conspicuously absent from this model is any notion that a task is replicated and computed

on a set of processors. At a lower level, we shall explain that the value the I/O specification

defines as resulting from a given task iteration will actually be the outcome of a majority

vote of processors assigned to compute the task. The task safety predicate taken as

primitive in the I/O specification, specifying when a task can be relied upon to produce

correct results, will be defined at a lower level to be a function of the amount of task

replications and the number of working processors.

Briefly, the model is organized as follows. Each task a in Tasks the set of all executive

and application tasks, computes a (mathematical) function, denoted by function(a), of

its input values. The function apply(f ,V) takes as parameters a functional value and

an argument list and produces the result of applying the function to the argument list. 1

Inputs(a) denotes the set of tasks providing inputs to a. For task b E Inputs(a), the

input to an iteration of a is provided by the most recently completed iteration of b prior

to the execution window of that iteration of a. A derived function b to i of a denotes the

iteration of b providing input to the i-th iteration of a. Because all tasks iterate once per

1This is in fact a trick to use a first-order encoding of functional value domains.
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frame, one can prove (as indeedwe do) that b to i of a is equal to i or i - 1, that is, that

• the input task is either "executed" in the same frame as the task or in the previous fi'ame.

During each iteration i of a task a, Result(a, i) denotes the set of output values which are

produced. In order to map task iterations to subframe time, the function i of a is used

to denote the time interval It1, t2] comprising the execution window of the:i-th iteration

of a. The functions beg(/ of a) and end(/ of a) are used to denote the begining and

end of the execution window, respectively.

The overall structure of task configurations within the I/O modelis illustrated in Figure

W-13. For a task such that the predicate task a safe during i is true, a will produce

exactly one output value during its execution window. The output(s) of a task which is not

safe during its iteration is unspecified. Because the configuration of tasks is different for

different phases of the flight, not all tasks necessarily compute each iteration. A predicate

a on during i determines whether Result(a, i) is expected to compute a function of its

inputs or to return a special _1_ element as its value.

Within the I/O specification, the interactive consistency algorithm is defined as a special

form of task. For such a task a, satisfying the predicate i/c(a), its associated mathematical

function function(a) is defined to be the identity function. Recall from our discussion

in Section 4 the interactive consistency algorithm is used in order for multiple processors

reading unreplicated (and possibly unstable) input to reach agreement on an input value.

As we explain below, a safe interactive consistency task will always produce a single output

value.

Based on these primitive functions and predicates, the I/O specification contains eight

axioms, expressing constraints on when task iterations are to take place and that safe

tasks compute functions of their designated inputs. We do not illustrate the entire set of

axioms here. The axioms related to the scheduling of task iterations are straightforward.

They express basic requirements that successive iterations of a task are properly ordered

in time and that the execution window of a task b must precede the execution window of

a task a to which it provides input.

The major axiom defining the Input/Output behavior of a task is the following:

a on during i A

task a safe during i A

V b E Inputs(a)

IResult(b, b to i of a)l _ 1

D

Result(a, i) --

t EInputs(a) A
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This axiom defines that any iteration of a task a, such that (1) a is both on and

safe and (2) each task b providing input to the i-th iteration of a returns exactly one

output value during its corresponding iteration (the notation Isl denotes the cardinality

of set s), will return exactly one output during its iteration (i.e., that Result(a, i) will be

a singleton set). The value produced will be that resulting from applying its designated

function function(a) to the set of (tagged) values produced by its input tasks. The set of

input values is specified as a set of pairs < v, t >, where, for each task t in the input set,

v is the value in the (singleton) set Result(t, t to i of a). Thus, provided a is safe and its

input is stable, it will correctly compute an output value. This is the main statement of

functional correctness of the system that is demonstrated by the proof effort.

In the case of interactive consistency tasks, one additional axiom governs its input/-

output characteristics:

(i/c(a) A i/e task a safe during i) D IResult(a,i)l :- 1

This defines that an interactive consistency task which is safe during its iteration

will always produce a single value as output. By the previous axiom, if its input task is

safe and thus provides a single output, the interactive consistency task will perform its

associated function (in this case the identity function) on the input. Even if the input

task is not safe, however, the current axiom defines that some single output Value will be

produced. This is the main correctness criterion for the interactive consistency algorithm.

We did not carry out a mechanical proof of this axiom - a hand proof can be found in

Melliar-Smith and Schwartz [20].

These are the major axioms of the I/O specification. In the next section, we present

the next lower-level specification and show how the primitives and stated axioms of the

I/O specification are supported at the next level.

5. The Replication Specification

The Replication Specification, at the next lower level, introduces the notion that tasks

are replicated and executed by some number of processors. Based on a high-level concept

of each processor communicating its results to all other processors, a specification of the

majority voting performed by each processor is given. Also defined (but not proven) is the

information flow through which error reports from individual processors are provided to

the global executive. This information is used by the global executive in order to diagnose

processor faults and remove, from the configuration, processors deemed to have solid faults.

The concept of task scheduling has been refined to define not only the execution

window for task execution but also the set of processors assigned to execute the task.

The function poll for i of a denotes the set of processors assigned to compute the i-th

iteration of task a. The I/O model primitive predicate a on during i is derived within

the Replication model as:
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aon duringi ----- 3pE poll foriofa

With the concept of processor computation 0ccuring in the Replication model, the task

safe predicate appearing as primitive within the I/O model can be derived within the

Replication model in terms of working processors. The Replication model includes a

variable S, which denotes the set of "safe" processors at any given time. S [t''t*] denotes

the set of processors safe during the interval [q, t2]. At the Activity model level, we will

define a processor being "safe" as a rather complex function of having correctly functioning

hardware, being in the correct configuration, and having a clock within some skew of other

processor clocks. Of course this set will not have an implementation counterpart, since

the implementation will never have perfect information concerning the set of correctly

functioning processors.

A derived concept at this level is that of a task iteration's data window.

The DWindow for b to i of a is defined to be the time interval

[ beg (b to/ of a) of b, end (i of a)].

Based on this function, we define DWindow for i of a to be the interval extending from

the begining of the execution window of the earliest input task to a and extending to the end

of the execution of i of a.

the value

of a. The

axiom:

Using these concepts of data window and the set of working processors, we can now

derive the task safe predicate of the I/O model as follows:

task a safe during i

,.,× 1poll iora n o,°L> Ipoll i ofal
V _--a on during i

The definition states that a task a is safe either if a majority of the processors assigned

to compute the task are working for the data window of the task or if the task is not on

during i. It is necessary that the processors are in the working set S for the entire data

window of the task in order that we can be assured (in mapping to the next lower-level

specification) that the processor will not corrupt its input data prior to its use. We omit

discussion of the conditions necessary to define the safety of interactive consistency tasks.

With the concept that a processor computes an iteration of a task comes the function

Result(a, i) on p which denotes the set of outputs produced by processor p for the i-th

iteration of task a. In a manner left unspecified by this level, processor p communicates

its results to all other system processors. The function Result(a,i) on p in q denotes

that processor q has reportedly received from processor p for the i-th iteration

relationship between Result on and Result on in is defined by the following

q E poll for j of b _ S Dw|nd°w for j of b

D

Result(b, j) on q --
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{ I 3p pESj°fbAv }v -- Result(b, j) on q in p

This defines that, for a processor q in the poll set that is safe for the DWlndow, the

Result set on q is equal to the set of values that processors safe for the execution window

have reportedly received from q. More intuitively, this states that the output of a working

processor in the poll is the set of values reportedly received by working processors.

The function Result(a, i) in q is used to define the result of processor q voting on

the output of the i-th iteration of a based on the results communicated to it.

The overall structure of the Replication model is illustrated in Figure IV-14. The

task structure shown is a refinement of the task configuration illustrated in Figure IV-13.

As we shall show shortly, the I/O primitive Result(a, i) for a safe task iteration will

be derived as the value a majority of assigned processors obtained by their voting. All

processors are required to report the results of each task computation to all processors,

and all processors are required to vote on all received values. Rather than a task producing

a set of output values as in the I/O model, in the Replication model, a task produces a set

of sequences of values. This reflects the fact that conceptual values in the system actually

consist of a sequence of "machine words". Processor voting is scheduled (as specified at

the next level of specification) on a word by word basis. We define voting via the following
axiom:

p E S j of b A

1 _ y _ result size(b)

D

(Result(b, j) in p)[y] --

- (Result(b,i) on qin P)[Yl

For a safe processor p, a vote on a defined value position y, the y-th element in Result(b, j)

in p is defined to be equal to the majority of first components in the set of value-processor

pairs < v, q >, where q is in the poll set and v is the y-th component of the result on in

value in processor p. This represents an encoding of majority value in the bag of all values

in p reportedly received from processors in the poll set for task b.

The main execution axiom of the Replication Specification is now given as follows:

P E poll for i of a N sDWlnd°w for i of a

Result(a, i) on p --

{ ( { I })/apply function(a), < v,t > t Einputs(a) A
v E Result(t, t to i of a) in p

This axiom, quite similar to its counterpart in the I/O model, defines that a working

processor p in the poll set for the i-th iteration of task a, will compute the proper
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function of its locally-voted input values. Note that, unlike its I/O axiom counterpart,

this is purely a local specification of the actions of a single, working processor operating

on locally-computed information - still with respect to a synchronous system.

We are now in a position to define the mapping up to the I/O concept of Result(a, i).

This is given by the following axiom:

Result(a, i) --

{ 3ppESi°fa A }v v = Result(a, i) in p

This expresses the set Result(a, i) as consisting of the set of values that safe processors

obtained as a result of voting.

We omit discussion of the other axioms of the Replication Specification. In order to

show that the I/O Specification is a valid abstraction of the Replication Specification, we

must prove that the I/O axioms follow as theorems from the Replication axioms and the

mappings.

The proof of the main Execute axiom of the I/O Specification required that each safe

processor voting be shown to obtain the same voted value, assuming from the antecedent of

the I/O Execute axiom that the task is safe and that there is only one value of the Result

of each input task. This implies that each safe processor applies the correct mathematical

function to the same set of input values and thus every safe processor produces the same

correct output value. But our I/O assumption of task safe asserts that a majority of the

processors computing the task are safe; therefore, the majority of computed values must

be the correct value.

The proof of the main I/O Execute axiom from the Replication axioms required

approximately 22 proofs, with an average of 5 premises necessary per proof, and 106

instantiations of axioms and lemmas overall.

6. The Activity Specification

This level of specification defines a completely local view of the behavior of a single

processor in the SIFT system. The fully distributed nature of the SIFT system is specified at

this level: each processor has an independent concept of time, configuration, and schedule.

Also at this level is a more explicit model of the activities and data structures carry out the

transformations specified at the Replication level. Whereas the Replication level defines the

executed and voted values for each execution window of a task, the Activity level defines

a schedule of execute and vote activities to realize this within the execution window, as

shown in Figure IV-16.

Within the Activity model is the first indication that the SIFT system is not synchron-

ous; the subframes on the various processors start and finish at slightly different real
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times. Two functions, start(t, p) and finish(t, p) map subframe time on processor p to real

times at which the subframe starts and finishes, as shown in Figure W-15. "Real-time" is

represented in the specification as a discrete domain, which can be thought of as "clock

ticks," to allow induction. A short overhead interval occurs between the finish of one

subframe and the start of the next. Because of clock skew and transport delay within

SIFT, the processors will not be exactly synchronized, but, for the system to function

correctly, it is necessary that the clocks remain within a specified tolerance, max skew,

of each other. This is the responsibility of the clock synchronization task, a part of each

processor's Local Executive, using an algorithm whose proof is given in Appendix B. The

required synchronization is expressed by:

clock safe(p, t) A clock safe(q, t)

D

finish(t, p) + broadcast delay __ start(t + 1, q) V

finish(t, q)+ broadcast delay < start(t + 1, p)

As we discussed earlier, SIFT is carefully designed so that tile distributed system is

effectively synchronous. Within the limits given above, asynchronism caused by processor

clock skew has no external effect. In the case of the broadcasting of the results of a task,

for example, our specifications define the value at the destination only after the latest time

at which the broadcast could have been completed, given the maximum processor skew. It

is necessary to prove that no access tothese data is attempted before that time, in order

to map this asynchronous system up to the higher-level, synchronous Replication and I/O
models.

The state of each processor is specified using two state-selector functions, correspond-

ing to two data structures of the SIFT operating system: a data file connected via a

broadcast interface to all system processors, and an input file into which voted values are

placed and from which a task retrieves its input values. In the Activity specification, the

function datafile in p for a on q at rt denotes the value in the datafile in processor p at

real-time rt for the result of task a on processor q. The function input in p for a at rt

denotes the value in the input file in processor p at real-time rt for the voted result of task

a.

As we mentioned earlier, each processor has an independent opinion of the configura-

tion it is expected to use in scheduling activities. At the start of a subframetime t, processor

q uses as the appropriate configuration eonfig(t, q) the value in a configuration subfield of

input in q for GE() at start(t, q), where GE() denotes the replicated Global Executive

task. For configuration c, the function sched(c, t, q) denotes the sequence of activities

scheduled for subframetime t on processor q. An activity is either < execute, a >,

specifying the execution of task a or < vote, a, y > specifying a vote on element y of

the output of task a. Figure IV-6 illustrates the interaction between the data structures

and scheduled activities.

The effect of an execute is specified by the following axiom:
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p, q E W t A

< execute, a >E sched( config(t, q), t, q)

D

datafile in p for a on q at ( finish(t, q) + broadcast delay(}) --

( { ^ })apply function(a), <v,b> v--input m qfor batstart(t+l,q)

The set W t denotes the set of correctly functioning (working} processors during sub-

frametime t. The antecedent of the axiom defines that processors p and q are working

during subframe t and that an execute activity for a is among the activities scheduled for

processor q, according to its perceived configuration. The consequent specifies that the

datafile in each working processor p for a on q at the finish of that subframe plus the

broadcast delay, according to q's clock, is equal to the correct function applied to the set

of input values present in the input file at the start of the next subframe. Several explana-

tions are in order. The hardware broadcast interface connecting processor q's datafile to

all processor datafiles is asynchronous and can be initiated at any time during the sub-

frame, with respect to q's clock. In the event of an execute and a broadcast by processor

q sometime during subframe t, the earliest moment at which the entry for a on q can be

guaranteed is the finish of the subframe plus the maximum broadcast delay. Thus the value

is only defined at this moment in time, and with respect to the broadcasting processor's

clock. It was necesary to demonstrate that, with respect to receiving processor p's clock,

the information is present by start(t+ 1, p). Given the set of specified schedule constraints,

it was shown that the information is present in all loosely synchronized processors prior

to the first moment at which access can occur.

One might notice that an execute activity scheduled during subframe time t causes

the datafile at the start of time t + 1 to contain the result of applying the appropriate

function to the arguments present at the start of time t+ 1. This rather noncomputational

definition is due to the possibility of one subframe containing a vote on an input value and

subsequent use in an execute. The effect of this sequence can be characterized by stating

that the execution uses as inputs the values defined after the end of the subframe. In

mapping this to the computation performed by the implementation, it was necessary to

prove that schedule constraints allow this to be achieved by sequentially performing the

activity sequence scheduled for the subframe.

The axiom defining a vote activity scheduled for the subframe is the following:

pE W t A

< vote, a, y >E sched( config(t, p), t, p)

D

(input in p for a at start(t + 1,P))ty]--

majority < d, q > d = (datafile in p for a on q at start(t, P))[Yl
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Given a working processor p scheduled to perform a vote on the y-th component of

a during subframe t, the input file in p at the start of the following subframe is defined to

be the majority of datafile values present in the datafile at the start of subframe t. The

function poll byp for a at t denotes the set of processors determined by p at the time of

the vote to have executed the last iteration of task a. This is defined as a rather complex

function of p's view of the system configuration at the start of the subframe and of the

schedule table. We do not give the definition here.

• These axioms constitute the primary axioms defining the Activity specification. There

are in all approximately 40 axioms defining the introduced functions and predicates of the

model and constraining the composition of the schedule table.

In terms of the functions of the Activity model, we can now define the mappings to the

function symbols of the Replication model. The function Result on in of the Replication

level is derived with the following axiom:

v --- Result(a, i) on p in q

Vy, t beg(/of a) __ t <end(/of a) A

1 < y __ result slze(a) A

< vote, k, y >E sched( conflg(t, q), t, q)

D

v[y]---(dataflle in q for a on p at start(t,s))[y]

Briefly, the mapping axiom defines each component y of the Result on in value to be the

value present in the datafile at the time during the execution window when a vote activity

is scheduled for element y. Thus, the concept of value reportedly received by processor q

from processor p is defined as the value used at the time of a scheduled vote on q.

In an analogous manner, the mapping up to the Replication Result in voted value

is defined by the following axiom:

start frame(frame(t)) --- i X frame size() A

1 < y < result slze(a) A

< vote, k, y >E sched( eonflg(t, p), t, p)

D

(Result(a,/) in p)[y] -- (input in p for a at start(t + 1,p))[y]

Briefly stated once again, each y-th component of Result in for processor p is defined to

be the value in the input file in p at the start of a subframe following a vote scheduled on

element y during a subframe corresponding to the i-th iteration of task a. Intuitively, the

voted value is the value in the input file following a scheduled vote. Schedule constraints

allow only one vote to be scheduled on a given element during an execution window.

The poll for of concept of a global poll set found in the Replication level is mapped

up from the Activity level with the following axiom.
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pollfor i of a -- _ q 13p 3 t 3 y

start frame( frame(t)} = i X framesize()

1 _ y < result size(a) A

vote, a, y _E sched( conflg(t, p), t,p) A

pES i of a A

qEpollbypforaat t J

A

The global concept of poll for i of a is derived as the set of all processors included

in poll by p for a at t at the time of a scheduled vote (of_any element} on a processor p

safe for the execution window.

Finally, the last mapping to be illustrated is the derivation of the set of safe processors,

as used in the Replication model. This is defined by the following mapping axiom:

st--- { pIpEW t Aclock safe(p, t) A

task GE() safe during last(t, GE()) A

Result(.GE(), l.ast(t, aE()))--
input in p for GE() at start(t, p) )

The above definition represents a precise statement of a processor that is correctly function-

ing, has a view of the last Global Executive output reflecting the consensus, and whose

clock is close enough to other safe processors to properly communicate. The interaction

between processor safety and the output of the Global Executive is worthy of further ex-

planation. The definition does not require the processor to have been safe during previous

subframes; this allows transient faults to have affected the processor in the past. The only

requirements expressed are (1) that the Global Executive task have had sufficient replica-

tion to remain safe (effectively since system start-up), (2) that the configuration (contained

within the output of the Global Executive) for the current subframe be unaffected, and (3)

that clock safety be recovered despite any transients affecting the clock in the past.

The proof of the relationship between the Replication Specification and the Broadcast

S_pecification was quite challenging. The proof involved showing that the distributed sys-

tem has, as a valid abstraction, the synchronous, global characterization expressed in the

Replication Specification. This required that the axioms and schedule constraints imply

consistency of configuration and schedule within a single processor and between processors

during an execution window. It was necessary to show that vote and execute activities,

replicated on different processors and running during different subframes within the frame,

use the same information for input. Furthermore, the proof required that the various

processors, operating independently and asynchronously with only local information, com-

municate with each other without mutual interference; that the task schedules guarantee

that results are always available in other processors when required, and are never accessed

during broadcast. The derivation of the Replication axioms involved 56 proofs, with an

average of 7 premises each, and 410 instantiations of axioms and lemmas overall.
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7. PrePost and Imperative Levels

The PrePost specification intended to form a bridge between the Activity Specification

and the Pascal programs of the operating system. It is expressed in terms of preconditions

and postconditions for operating system operations and the specifications are very close to

the Pascal programs, essntially requiring the programs to "do what they do'.

The Activity level represents a specification for each processor in the distributed,

multiprocessor system. In contrast, the PrePost level, very similar in abstraction to

the Activity level, defines the behavior of a single, independent processor. The model

employs the data structure abstractions present in the actual Pascal operating system

implementation and is intended to facilitate a connnection between the multiprocessor

system specification and the proof of the Pascal operating system executing on a single
processor.

At the program level of abstraction, even conceptually simple properties require very

complex specification and tedious verification. Because of the difficulty inherent in mapping

between design specifications and an imperative implementation model, we deliberately

limited the conceptual jump between the two levels. Having proved all considered aspects

of the design correct at higher levels in the hierarchy, the only conceptual jump between

the lowest level design specification and the implementation was the change in specification

medium; the PrePost specification expresses that the "code does what it does." A tradi-

tio:,al verification condition generation paradigm [13] was employed to prove precondition-

/postcondition procedure characterizations from the Pascal procedures, each treated as a

sequential program. We explain only enough of the model and its specification for the

reader to glean an overall understanding of the nature of the specification.

Within the PrePost model, the state of a processor is specified as a pair < p, t >,

where p is a processor id and t is a subframe time. Accessor functions proe and time

map states into component processor and time components (respectively). For a state

pair < p,t >, the function next(< p,t >) --< p,t + 1 >. Within the PrePost

model, each data structure of the Pascal program is declared as an explicit function of

the state. At the program-level, the datafile is implemented as a two-dimensional array

of type array [proc,task] of array[Integer] of Integer, mapping a processor id

and task name into the array of Integer values currently in the datafile. The input file

is a program structure declared of type array[task,Integer] of Integer, task name

and. element number into an Integer value. Similarly, the schedule table is implemented

as an array of type array[proc, config, subframe, activity-index] of activity,

defining for each processor, configuration, subframe, and activity index, which activity is

to be performed. The schedule table is a constant data structure present in each processor
and thus not a function of the state.

The following PrePost axiom defines the semantics of the Execute activity:

proe(si ftstate) E W tlme(siftstate) /k
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3j 1 __ j _ max activities() A

< execute, a >-- ached table()[ real to virt(siftstate)[ proe(siftstate)],

pconflg( si f tstate),

subframe{siftstate),

j] ^
VbVjVy 1 <_ y __ result size()[b] A

p.inputs[a, j] -- b _ null task()

D lnp[j, y]-- input( next(siftstate))[b,y]

D

dataflle{ next(si f tstate) )[ proe(si f tstate ), a] -- task results(a, inp)

The antecedent of the axiom defines the case where the processor component of the state is

correctly functioning for the current subframe, some activity of the schedule for the current

configuration and subframe specifies an Execute for task a, and the auxiliary array variable

inp contains the value in the input data structure in the state next(siftstate), for each

input task b indicated by the array p.inputs. The array real to virt, shown here as an

explicit function of the state, maps a real processor id into a logical processor id, in terms

of which the schedule table is defined. Assuming the antecedent holds, the axiom then

defines the datafile in the executing processor in state next(siftstate) to contain the results

of applying the appropriate mathematical function to the input array inp. As we discussed

in the previous Section, it is required to prove during code verification that sequential

execution of the schedule activities will satisfy this noncomputational specification of effect.

A mapping axiom defines that the value corresponding to the processor's own entry in the

datafile of a safe processor will be in all other datafiles by the start of the next subframe.

In order to apply sequential verification techniques to the Pascal program executing

on the processor, it is necessary to make the state _ p, t _ of the processor and the de-

pendence upon a correctly functioning processor implicit. The sequential proof, in effect,

considers execution on a properly functioning Pascal machine satisfying the axiomatic

specification of Pascal. Furthermore, the next(siftstate) transition is taken to be one

iteration of the Pascal dispatcher procedure, called once per subframe by a clock inter-

rupt to execute the scheduled activity sequence. This "metatheoretic" jump is the only

departure from our formal notion of hierarchy and is made as a concession to allow tradi-

tional code verification tools to form the last link in the proof. The validity of this jump

is dependent upon a proof that the dispatcher in fact is allowed to execute as a sequential

program, with no clock interrupts before completion and with no interference between

internal and external data structure access. The former assumption was demonstrated by

a timing analysis of the actual Bendix 930 code and the latter by the non-interference

proof at the Activity Specification level.

The following precondition/postcondition characterization of the dispatcher is produced

and verified for the actual dispatcher procedure:
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3jl__jg max activities() A

<( execute, a :>-- sched table()[ real to virt(myproc),

pconfig,

sub frame,

J] ^
VbVjVy 1 _ y _ result size()[b] A

plnputs[a, j] -- b _ null task()

D inp[j, y] -- input[b, y]

{dispatcher}

dataflle[myproc, a] -- task results(a, inp)

Hoare sentences like the above, asserting properties of a sequential dispatch procedure and

its effect on the Pascal data structures, were proven consistent with the actual implemen-
tation.

The code proof required demonstration of approximately 40 verification conditions

and was carried out by Dwight Hare and Karl Levitt using a version of the SPECIAL

code verification system. The design proof between the Activity and PrePost specifications

required 17 proofs, with an average of 9 premises each, and 148 instantiations overall.

8. Conclusions and Further Work

Our proof has demonstrated that the Pascal implementation of the SIFT distributed

system satisfies the execution axioms of the I/O Specification. That the axioms of the I/O

Specification characterize "correct" system operation remains a subjective judgement. The

soundness of the axiomatic specifications is demonstrated by the existence of an imperative

model at the lowest level of the hierarchy, relative to interpretations for all unimplemented

function and predicate symbols (such as W, the set of working processors). Also assumed

is the correct implementation of the Pascal machine, realized by the Pascal compiler and

the Bendix BDX930 hardware.
" i

The proof of the fault tolerant clock syncronization algrithm was performed indepen-

dently, without mechanical support, and is given in Appendix B. The mechanical proof

given here, the proof of correspondence to the I/O Specification, encompasses schedul-

ing, rating, and interprocessor communication. Yet to be performed is the proof of or-

respondence to the probabilistic reliability analysis, encompassing error diagnosis and

reconfiguration. We expect to perform this remaining proof over the next year.

The process of formal specification and verification of SIFT resulted in the discovery

of four design errors - errors that would have been difficult or impossible to detect by

testing. Early specification efforts uncovered the insufficiency of three clocks for fault-

tolerant clock synchronization (see Appendix B). The formal proof revealed that tasks
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not scheduled to execute did not regenerate their default result value every iteration, thus

exposing that result to the accumulation of errors from transient faults.

A conclusion of our work is the importance of design verification prior to implemen-

tation verification. The highest-level design specifications for the SIFT system could not

have been expressed in terms of specifications of individual Pascal programs.

The STP system used for specification and mechanical proof was developed concur-

rently with the proof effort, with its approach heavily influenced by our ongoing experience

in attempting the proofs. The success of the man-machine symbiosis depended upon the

user being able to express naturally his understanding of the proof in guiding the proof.

Under other sponsorship, SRI is currently developing a new specification language for

HDM, including parameterized theories, specification of state-modifying operations, and

Hoare sentences, and are constructing an enhanced STP verification system.
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Appendix A. SIFT Test Plan

1 Test Philosophy and Goals

This section describes a strategy and plan for testing the performance and fault-tolerance

characteristics of SIFT. In the validation and verification plan developed for SIFT,

testing is not intended to verify correctness of the SIFT design but rather to measure

quantitative characteristics, such as recovery time and performance under fault

conditions, and to verify that a given version of the machine was correctly constructed.

The approach described was developed concurrently with the SIFT architecture, and

guided the design of the SIFT test facility. The test plan was not actually implemented,

due to the greater than anticipated effort required for system integration and debugging.

Despite the lack of experience with its application, we believe that it offers a general and

effective technique, not only for SIFT but for a broad class of fault-tolerant, general-

purpose computer systems.

Test Philosophy

The purpose of the SIFT test is to help provide a very high level of confidence that the

actual SIFT computer is performing according to its specifications with respect to both

fault-free performance and survivability in the presence of faults. In the broad sense,

this confidence is supported by the design approach adopted for the computer, by the

care taken in its design and construction, and by the proofs that the programs indeed

solve the problems for which they were written. The test of an actual SIFT computer

must enhance this confidence by demonstrating, both to the casual observer and to the

most critical test operator, that SIFT actually functions as intended in a representative

operating environment of input data, programs, and failures.

The anticipated test will not be completely exhaustive; indeed, exhaustive testing over all

input conditions', computations, modes, and possible faults is not possible within a test of

limited duration. Nevertheless, successful operation of SIFT over a period of several

weeks, including simulation of a variety of both flight conditions and faults, can provide

a very convincing demonstration that all reasonable sources of degrading performance

have been anticipated and dealt with in the design and development of the machine and

its software.

The particularly high reliability requirements and the reconfiguration concept of SIFT

are more demanding of performance than the computational requirements themselves.

In addition, fault simulation and thorough monitoring of the internal status of SIFT will

certainly be easier to do under ground laboratory conditions than in flight.

Consequently, those aspects of SIFT concerned with reliability and accommodation to

faults will necessarily receive the greatest emphasis in testing.
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In principle, the test of any system may be conducted on any of several levels. For
example, one might verify that all gates and intergate connections in a system are
behaving in accordance with the design, by applying system inputs that cause each
individual gate to be flexed through all of its distinguishable input combinations, and
that create sensitizedpaths through the rest of the system so that any erroneousgate
signals will manifest themselves at system outputs. (ICs and many kinds of circuit
boards are normally tested in this way.) At a higher level, one might verify that all
individual instructions are executed properly on a representative sample of data.
Alternatively, to jump to the highest level, one could run benchmark programs to
measurethe throughput, speed,accuracy, and reliability of the machine, under a wide
variety of input-data conditions, without ever concerning oneselfabout individual gates
or instructions.

In practice, none of these approachesis sufficient by itself. In order to achieve high
confidence that the system is performing according to its specifications,a well-balanced
mixture of tests corresponding to various system levels is required. Such a multilevel
testing philosophy is particularly important in a computer suchas SIFT whosereliability
requirements are exceptionally high. Fortunately, whereasa thorough analysisof fault
modesat different levels would be impractical in many computers intended for general-
purposeapplication, the basically simple structure of the units composingSIFT, plus the
limited and known program repertoire, combine to make the task feasibleand practical.

The highest-level specification of SIFT is expressedin terms of the reliability model,
which relates overall SIFT reliability to the failure rates of individual hardware units
(mainly processors),through other relevant variables such as the reconfiguration status,
diagnostic detection and recovery times, and transient error probability. Part of the
function of the testing will be to determine someof these rates and times empirically
within a realistic application environment. Certain assumptions made in setting up the
model may also be checked by actual experiment.

This same application environment will also provide the opportunity for a performance
test, most of which may be run in the absence of faults.

At the lowest level, the test will verify that the actual SIFT hardware correctly executes

the machine instructions and the communication functions called for at the lowest

specification level (actual programs). This part of the validation will verify that the

system is a true implementation of the design.

Another function of the testing will be to verify, through extensive demonstration, that

certain fundamental principles of the SIFT concept are actually achieved. For example,

it will be shown that all processors operating with identical inputs and initiated with

identical memory contents produce identical outputs.

Finally, the testing program will provide an opportunity to optimize empirically certain
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diagnostic parameters, such as the number of detected errors received before

reconfiguration is initiated, and to include actual diagnostic tests for subtle, long-latency

faults that may escape identification during fault analysis.

General Strategy and Goals

This test philosophy for SIFT will be implemented by conducting the tests in a sequence

of three stages of increasing difficulty. It is assumed at the start that debugging of the

computer has been practically (if imperfectly) completed. The three test phases are as

follows:

I Verification of function and performance of SIFT under fault-free conditions,

for a variety of programs and input-data patterns.

II Verification of its capability to accommodate faults of various types, under

the same program and input conditions and a representative set of faults

(short-term survivability).

III Verification of dependence of reliability of SIFT on a variety of design

assumptions and parameters, under a broader class of faults, inputs, and

(perhaps) programs (long-term survivability).

The primary goal of the SIFT testing effort is to carry out these three test phases.

Secondary goals, as indicated above, are:

• To aid in debugging

• To aid in optimizing certain design parameters that are difficult to determine

without operational experience.

All tests on SIFT will be carried out with the aid of a System Test Facility (STF), which

consists of a Data General Eclipse computer, a suitable complement of peripherals, a set

of testing programs, and some miscellaneous hardware for fault insertion.

2 Test Strategy and Approach

Test Parameters

The life cycle of a permanent fault is depicted in Figure A-1 and may be described as
follows:

Fault occurrence (FO), followed by a latency interval, and terminating in

Fault detection (FD), which occurs repeatedly during an alert interval, ending



124

at the rth detection with

Fault location (FL), when the reconfiguration interval starts, leading finally
to a condition of

Fault handled (FH).

FO FD

" I t
1

k , J_
_r

LATENCY

INTERVAL

FL FH

, , I [
2 3 "'" r

_r ,s_y.j
ALERT RECONFIGURATION

INTERVAL INTERVAL

FIGURE A-1 LIFE CYCLE OF A PERMANENT FAULT

In general, the first FD causes voters to disregard outputs from the questionable unit,

when generating consensus, but to continue to operate these units and to increment error

counts as if they were still functional. When the count for a unit reaches a preset value

r (2, 3, or 4), reconfiguration takes place.

For a transient fault, only the first two steps (FO and FD) pertain. That is, if fewer

than r FDs occur within a reasonable time Td, starting at the first FD, then the detected

error is assumed to be due to a transient, rather than a permanent, fault, the

questionable unit is reinstated, and voting returns to normal.

For an undetected fault, only the event FO takes place, of course.

The duration T L of the latency interval is determined by the fault coverage (actually

error coverage) of the application and diagnostic programs and the rates at which they

are being run. The duration T h of the alert interval is a function of these same factors,

plus the integer r and the time T d. The time for reconfiguration is a small constant, and

is determined by the running times of the reconfiguration programs in the global and
local executives -- not more than a few milliseconds.

The variables T L and TA, and especially the former, can be expected to be distributed

approximately exponentially, a consequence of the nearly Poisson distribution of

naturally occurring faults. The presumed shapes of the distributions enter into the SIFT

reliability model as assumptions, and their average values appear as parameters in the

model for calculating overall SIFT reliability. One of the specific goals of SIFT testing is

to verify the shapes and average values of these distributions.
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The above description applies to a single isolated fault, which is the most common type

and the type that SIFT is designed to accommodate in a deterministic manner, one at a

time. A more difficult and presumably less likely situation occurs when two or more of

the fault cycles shown in Figure A-I overlap one another in time. This overlap may

occur in a variety of ways. If too many faults occur too close together in time, in too

many different processors, the fault tolerance capability of SIFT is exceeded, and failure

occurs in the form of either an output error or system collapse. Such a condition could

conceivably occur if one or more latent faults lurked in the computer without

manifesting during a long period of operation, only to manifest coincidentally with

another fault, perhaps correlated with the first one.

Prior analysis has dealt with identifying these extreme situations, estimating their

relative likelihoods of occurrence, and determining how SIFT should deal with them.

For present purposes, it is sufficient to note that any such multiple overlapping faults, to

the extent that they may be described at all, must be identified individually as potential

faults by analysis of the circuitry, and injected during the tests to verify that they are

properly accommodated. Examples of even very extreme conditions may be created to

test the limits of SIFT's capability for fault accommodation.

Fault Diagnosis

Fault diagnosis is concerned with the detection, location, and handling of faults in a

system. In the case of SIFT, the term will be reserved for these three steps of fault

tolerance when they are carried out during normal operation, apart from debugging,

check-out, and laboratory testing. Since faults in SIFT are accommodated by

reconfiguration (rather than masking or repair) and since reconfiguration is an inherent

part of SIFT and not a separable function, diagnosis refers here to the method and

means for detecting random faults during normal operation, and tracing them to the

defective processor. There is no need in SIFT to localize them any more finely, of

course.

The detailed design of the fault-diagnosis programs in SIFT need not be carried out fully

before testing is planned. Two of the features of these programs are important, however,

and must be clearly understood.

First, diagnosis will be accomplished by a mix of three types of programs, as follows:

Type A: Regular application-task programs run under normal operating conditions.

Input data is derived from sensors only. SIFT outputs (actuator and display

signals) may or may not be blocked, depending on whether the corresponding

control and display functions are needed at the moment. The error detection

and location information derived from voting is active in both cases.

Type B: Regular application-task programs that have been "stretched" internally

to force entry into computation modes normally encountered only
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infrequently, and, where possible, to make heavier and more varied useof
certain subunits of the hardware and callable subprograms. Dummy sense
data are provided to flex the programs through a wide range of input
conditions. SIFT outputs are blocked, but the detection and location
information from voting is active, asfor Type A:

Type C: One or more specially prepared diagnostic programs, created specifically

to ferret out elusive and hard-to-detect faults. These may be partially self-

diagnostic--that is, they may be operable only within single processors,
independent of the others.

It is not known at the present time to what extent Type C programs will be needed,

what their particular form should be, and what is the appropriate mix of the three types
of programs.

Second. none of these diagnostic programs is intended to detect faults in the 1553A links

that drive the actuator outputs. Such faults appear to SIFT as changes in the signals

provided to the actuators, just as if the actuators themselves were defective_ This

limitation of coverage is inherent in the design of any fault-tolerant multiprocessor, and

is a consequence of the fact that, at some point, the protected signals and data within

the redundant system must interface with the nonredundant environment. In the case of

SIFT, tolerance to actuator failures will normally be provided by multiple, separately

driven actuators, or by associated fault-tolerant actuator circuitry external to SIFT
itself.

Proof-related testing

As indicated above, the SIFT hardware will be tested by a balanced combination of

proof-related and fault-injection testing. These two aspects will now be discussed
individually.

In order to support the analytic validation effort of SIFT, the test procedure includes

portions at three levels of the proof hierarchy.

At the top level, overall performance will be verified by benchmark runs, using actual

executive and task programs running in full complement. These will be run, first, in the

absence of simulated faults. For these (and all subsequent) runs, SIFT will be interfaced

to a program environment in the STF consisting of a simulated aircraft capable of

operating in a variety of flight modes, as well as a simulated flight sequence with

optional operator (pilot) intervention, aerodynamic disturbances, and navigation inputs.

At the bottom level, every individual BDX930 instruction used in SIFT programs will be

validated independently against a formal ISP specification of that instruction. Each

instruction validation will be carried out by executing, on SIFT, an STF-controlled test
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sequence that conforms to the formal specification. This part of the testing is an

extension of the self-test program supplied with the Bendix 930.

At intermediate levels, three other tests of SIFT will be carried out. The isolation

property will be verified by monitoring SIFT response to a large number of simulated

faults during the execution of a variety of task and executive programs, to demonstrate

that the set of nonfaulty processors is immune to erroneous signals produced by a faulty

processor. The identity property of SIFT will be verified by running the benchmark

programs in parallel on all processors, with clocks well synchronized, in order to

demonstrate that nonfaulty processors having identical input data compute identical

outputs (even with respect to timing). The consensus property will be verified by

detailed monitoring of processor outputs during the creation of extreme error conditions,

particularly those affecting synchronization. This will demonstrate the validity of the

voting and Interactive Consistency implementations, and especially the property that the

Interactive Consistency subprograms and voters produce identical outputs for both a

minority of i and a minority _ I errant processors. This last part is included to permit

most of the fault simulation tests to proceed with faults injected into only one processor

rather than two or more.

Fault Injection Testing

The goals of this portion of the testing are to demonstrate the immunity of SIFT outputs

to hardware faults, including timing discrepancies, occurring in a minority of processors,

and to identify any faults that have particularly long latencies.

In the broadest sense there is no need to be concerned in SIFT with the number, type, or

frequency of faults occurring within a single processor, except as those faults manifest

themselves at the interface between the faulty processor and the nonfaulty processors.

This isolation property could be persuasively demonstrated by a test in which the

offending processor is replaced by a signal source capable of broadcasting, to the other

processors, a rich variety of data sequences representative of faulty conditions, as

suggested by the diagram in Figure A-2.

For the signal source, one might use a random-noise generator, were it not for the fact

that the time required to exhaust all possible meaningful sequences (or even a significant

fraction of them) is many orders of magnitude too great to be accommodated in a test

program of limited duration. Consequently, random-signal generation at the processor

interface level cannot be relied upon for testing SIFT.

Instead, means must be found to generate only those processor output errors that

correspond to a representative class of faults and operating conditions. There appear to

be three possibilities:

1. The faulty processor could be replaced by an emulating computer within

which faults are simulated.
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P2

P5 Pq

FIGURE A-2 FIVE-PROCESSOR SIFT CONFIGURATION

2. Faults could be simulated by means of software, within an actual SIFT

processor.

3. Faults could be injected directly into the hardware of an actual SIFT

processor.

Option 1 provides the broadest fault coverage of the three, but the relatively slow speed

of the emulation slows down the testing considerably, even if a large, high-speed

computer were employed for the emulation. The second option restricts the fault class

somewhat to faults that can be simulated by changing bits in memory and registers, but

it is fast (nearly real-time) and requires a minimum of external equipment. The third

option restricts the fault class even more (though in a different way). Since the fault

injection must be done manually, it is tedious and slow. There is also the danger of
accidental permanent damage to the computer, due to overloads, burn-outs, exposure to

the environment, or mechanical damage. However, the corresponding tests would be a
more dramatic demonstration of SIFT's fault-tolerant feature.
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For the testing of SIFT we have chosenthe second and third options, with primary
relianceon option 2: fault injection by softwaresimulation.

Somefaults may arise naturally during the testing of SIFT, but their expectedfrequency
is so low that they are virtually uselessfor testing purposes. They affect the designand
executionof the test plan only in that provision must be madeto distinguish any that do
occur from faults that are injected. Actually, faults left over from debugging will
probably exceedthe number of naturally occurring faults. The distinction is somewhat
moot, since, in most cases(designerrors excluded}, it will never be known whether they
occurred during fabrication or aroselater.

Manual Injection of Faults During Testing

To a casual observer, manually injected faults will surely provide the most convincing

evidence that fault tolerance has been achieved, even though many faults of interest

cannot be so injected. It is planned that most of the following faults will be injected

manually:

Components removed

Connectors disconnected

Boards extracted

Certain open circuits on boards

Certain short circuits on boards

Components replaced by others with different values

Signals injected at test points (e.g., noise, transients, 400 cycle hum, etc.)

Special adjustable circuits (for changing clock frequency, power-supply

voltage, etc.}

Special hardware has been constructed for manual fault injection:

• 3 board extenders provide physical accessibility to board circuitry. Series

switches and tie points are provided on all extended lines except power
connections.

• 10 IC-extenders (DIP jumpers) provide electrical accessibility to board

circuitry*.

*All IC's on the PI, T&C, MIC and CPU boards of processor #7 are mounted in IC sockets, so that
these ICs may be extended for test purposes.
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• 2 identical test boards consist of fault emulation logic circuits, mini-switches,

and sockets, for creating various fault conditions in a SIFT circuit.

Faults are injected by direct connection into the signal lines of a selected IC that has

been removed and placed in an appropriate socket on the test board. The DIP jumpers

are used to connect the IC under test to its socket on the SIFT board. Faults are

injected through mini-switches on the test board that are in-line between the IC and the

DIP jumper.

Figure A-3 shows the logic diagrams for the fault-emulation logic. It includes three

miniswitches that can be used to create various faulty logic conditions. Connection

points for tying into this logic are located on the test board and labeled with letters.
I

The letters correspond to the connection points listed in Table A-l, which shows the

conditions that may be Created to emulate a fault and which connection points and

switch positions (where applicable ) to use.

Fault Simulation

The broader class of simulated faults may be injected with the aid of a program, resident

mainly in the STF, that has the capability of introducing errors into programs, data, and

control information within the individual units of SIFT. Many such simulated faults

correspond exactly to gate-level faults, and require changing only one or a few memory

or register bits at a time. Others correspond to higher-level faults in procedures and
programs or involve the modification of entire words.

It will be necessary during testing to augment the program library of the processors with

a small auxiliary program for momentarily interrupting normal program execution so

that errors may be injected. Another auxiliary program will be needed to make

processor status information readily accessible for monitoring purposes. Requirements on

these and other special testing programs, as well as the diagnostic programs, are
described in Section 4.

The class of faults to be injected through simulation include at least the following, singly
and in combination:

• Transient and permanent faults

• Both correlated and uncorrelated multiple faults

• Faults at most or all system levels, for example:

Lowest level: opens, shorts, delays, electrical loading, environmental effects,

defective memory cells, etc.

b_termediate level: errors in instructions, clock drift, reduced computational

• ; : .: ) .....
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Table A-1

TEST BOARD CONNECTION POINTS FOR FAU LT INJECTION

CONDITION INPUT(S) OUTPUT

Stuck "0" A C

Stuck "1" A C

I nvarted bit A C

Logical OR A, B C

Logical AND A, B C

Delay of one half

clock cycle

Noise

D, E (clock) F

G,H

(noise generator)

SWITCH

POSITIONS

1,2, and 3 closed

1,2, and 3 open

1 and 3 closed

2 open

1,2, and 3 open

2 and 3 closed

1 open

n/a

n/a

Short to gnd J J n/a

OTHER

CONNECTIONS

Tie B to gnd

Tie B to gnd

Tie B to gnd
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accuracy, incorrect decisions, flags

erroneous data, etc.

and error indicators,

High level: program execution and calling errors, improper sequencing ,

misreconfiguration, incorrect voting, time-outs, errors

corresponding to violation of proof conditions, etc.

Fault Analysis

An analysis of all SIFT hardware units was conducted in order to determine, at least

categorically, the classes of faults to which SIFT is susceptible and for which fault

tolerance must be provided. Special emphasis was placed on those potential faults that

could lie in interface hardware between processors, and those that correspond to software

errors related to communications between processors--namely, those for which there is a

risk that a faulty processor might interfere with the correct operation of a nonfaulty

processor, or make it appear that its own fault lies within a nonfaulty processor.

An attempt was made to trace the errors resulting from every gate-level fault to the

point where each error is manifested as one or more erroneous bits in an addressable

memory location. This analysis assumed a range of normally occurring input conditions

for stimulating the gate or storage element in question, and for creating a sensitized path

from that gate or storage element to the memory location. This process was carried to

completion for virtually all faults. In a few cases the input conditions were found to be

so special that they could not be assumed to occur within a reasonable time during

random input testing o_" normal operation; these involved priority circuitry of the data

file. and a few spots in the microcode of the CPU. These faults require special Type C

diagnostics. In the case of a defective bus output driver in the broadcast unit, a fault in

one processor may appear as a fault in another. In a few other cases faults were found

to be undetectable, because they fell in redundant or protective circuitry: timeout units

in the transmitter and receiver sequencers, and in the power-on and power-off circuitry.

These faults cannot be detected except by manual disassembly. Finally, a few others

occur in memory or circuit functions that were provided for in the design of the

processor but were not used by the operating programs: a multiple-word broadcast

mode. some of the 930 instructions, portions of the main memory, and one of the data-

transfer modes of the 1553A link.

Stress Tests

Stress tests are planned within the testing program in order to determine certain limits

of system functioning under extreme fault, error, and operating conditions. Even though

these situations are impossible or very unlikely to occur during normal operations, the

information obtained from them will be used to provide points of calibration in the

relation that expresses the fault tolerance as a function of the number, variety, and

timing of fault conditions. The stress tests may also identify unexpected weaknesses or

susceptibilities in SIFT.
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Typical stressfault conditions will

• Introduce transient faults at an increasing rate

• Increase the number of faults introduced at one time (correlated or
uncorrelated)

• Accelerate the effective clock drift rate (by lengthening the clock

resynchronization period)

• Force very frequent reassignment, rescheduling, and reconfiguration

• Increase the application task load to fit more tightly within the computation
cycle (frame)

• Reduce the initial number of available processors to three

• Use dummy sensor input data that correspond to extreme aircraft motion and

aerodynamic changes

• Reduce power-supply voltage.

All of these conditions except the last may be imposed through software only.

Symmetry Test

The first step in Phase I of SIFT testing will be to carry out a symmetry test of all

processors and all boards, in order to verify, under full-load conditions, that

• All processors are functional in all slots

• All boards are functional in all processors

• All board pairs are functional in all processors.

This test is necessary to provide assurance that the multiple symmetries inherent in the

SIFT architecture are implemented in the actual hardware. These conditions were not

satisfied during the debugging-that is, certain processors did not work in particular

slots, and, more commonly, some of the boar(Is and board pairs appeared to be

incompatible with certain processors or with one another. These problems, most or all of

which were subsequently diagnosed and repaired, were due to marginal and/or noisy

signal levels and to construction defects that introduced subtle timing problems.

To this end, a compact series of seven tests was designed to satisfy the three conditions

listed above. It may be seen by inspection of the arrays in Table A-2, that all possible
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assignments of each processor to a different slot, and each board to a different processor,

are included except that (a) the 1553A boards are not moved from their home processors

(one board type may be safely considered to be part of the processor), and (b) the two

memory boards, which do not communicate with one another, are kept together. Every

pair of differing boards of the same two types (except the two memory boards, as just

indicated) is operated in a common processor during exactly one of the seven tests.

3 Test Procedure and Requirements

Phase L-Fault-Free Performance Tests

The goal of this first series of tests is to demonstrate that the SIFT computer is capable

of carrying out a typical set of aircraft-control tasks, as well as the local and executive

program functions.

The first step in this phase will be to conduct the symmetry test described above.

For the Phase I test proper, the STF provides a simulated aircraft in the form of a

program on the Eclipse that realizes the generalized equations of aircraft motion within

an aerodynamic environment. The inputs to this program are actuator signals generated

by SIFT, as well as mock aircraft-control commands and mode-selection commands from

the test operator. The outputs to this program consist of sensor inputs to SIFT, as well

as signals to the test operators for monitoring aircraft response. (Eventually, this will

include a dynamic display.) We have also provided for environmental influences such as

wind gusts, downdrafts, and aircraft malfunctions (e.g., one engine out).

The only faults in this phase of testing will arise either randomly or because of

incomplete initial checkout and debugging.

The entire SIFT computer will be run with a full program load and a variety of applied

inputs, in order to provide high assurance that it is operating correctly and at the

planned performance level, in the absence of faults.

Phase H--Short-Term Survivability Tests

The goal of the short-term survivability tests is to demonstrate the capability of SIFT to

recover successfully from various types of faults when running selected programs and

u_ing selected input data patterns. The Phase II demonstration is intended to be almost

entirely qualitative; that is, the selection of faults, programs, and input data will be

representative but not exhaustive, and will not be applied in the large variety to be

employed in the quantitative tests in Phase III.

Each individual test in this series will be carried out in the following sequence of steps:
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1. Initialize SIFT.

. Select a representative fault, either by the test operator or by systematic or

random selection from the stored catalog of candidate faults. Inject the fault

into the initialized SIFT, either manually or by simulation, as appropriate.

3. Select the program or program mix in a similar fashion, and so instruct SIFT.

4. Select the input data patterns similarly, and prepare the corresponding files

or programs in the STF.

5. Issue the start signal to SIFT, and run the program.

. The program will stop when a certain preselected waiting time (e.g., one

second} has elapsed after proper reconfiguration, or a longer time (e.g., one

minute) if no proper reconfiguration took place.

The system is then ready for the next individual test.

This same sequence applies to the injection of multiple faults, except that longer waiting

times will be allowed to provide for multiple reconfigurations and the increased

likelihood of unpredictable after-effects.

In all cases, the STF will monitor the internal status of SIFT for later analysis, and, in

particular, to make certain that reconfiguration was carried out properly-that is, that

the units retired from use included the one (or more) into which the fault(s) had been

injected. The most informative monitoring is expected to occur at a high level, even

though most of the faults are injected at a low level.

Phase Ill--Long-Term Survivability Tests

The main goals of the long-term survivability tests are to

• Gather data necessary for estimating SIFT reliability, using the Markov

reliability model

• Check certain of the assumptions on which the reliability model is based

• Determine quantitative limits on SIFT's capability for recovering from
extreme fault conditions.

A secondary goal is to collect data that will aid in optimizing design decisions concerned

with

• Reconfiguration strat%o-y
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• Diagnostic program mix

• Consistencyalgorithms for clocksand for sensorinput data

• Duration of time-out intervals.

PhaseIII may be regarded as the quantitative counterpart of Phase II.

These goals will be achieved by repeating many times the same types of tests employed

in Phase II, except that (a) the particular faults injected, the input data and the

programs being run will vary over much wider ranges, and (b) only simulated faults will

be injected. Detailed records will be kept of the times at which various fault-related

events take place (FO, FD, FL, and FH), and all other important changes in system
status between these times.

At the close of each individual fault test, an STF program will digest and compress the

time and event data in these records for permanent storage and later statistical analysis.

Statistical Analysis

This analysis, to be carried out later by another STF program, calculates the frequency

distribution, the corresponding averages, and the time constant for

• Latency interval

• Alert interval

• Reconfiguration interval

• Time from FO to system failure (on stress tests).

These calculations will be made for the tests as a whole, as well as for separate portions

corresponding to particular fault classes, programs, program mixes, and families of input
data.

The first of these, the latency interval, is by far the most important since it is the main

parameter that must be entered into the reliability model for determination of overall

SIFT reliability. It is also used for expressing the fault (or error) coverages of the

diagnostic programs. The analysis will also provide information on the relative

frequencies of incorrect to correct reconfigurations, of effectively undetectab!e faults to

detectable faults, and of multiple-processor to single-processor fault location (in cases

where single-processor reconfiguration would have been sufficient).
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4 SIFT Software Needed for Diagnosis and Testing

This section presents the rationale and the requirements for special SIFT software

fieeded for internal diagnosis and for testing (designated Type B and Type C

diagnostics). (Type A programs are the regular task programs.)

Type B Diagnostics

This diagnostic function is achieved by running the flight control and global executive

tasks using dummy, randomized inputs while all I/O connections to the 1553A link and

all local executive action are blocked.

To this end, additional SIFT software is required (a) to generate pseudorandom numbers

from a continually changing seed common to all working processors, and (b) to replace

each input variable by the current instance of the pseudorandom number (or, in some

cases, by the sum of the two, or another simple function*) as each task is called in

diagnostic mode by the scheduler. Blocking of the I/O will be carried out by the

scheduler, by simply eliminating the calls to those tasks that initiate 1553A transmission

and reception.

In order for the Type B diagnostic programs to be effective, it is essential that the

randomization of inputs not throw any of the programs into running conditions that

would cause different processors to produce different results. This might occur in

computations dependent upon the processor identification number (PID) or the value of

the real-time clock (RTC); it could also occur if any program were thrown into a loop,

which might be broken at an unpredictable point by a time out.

The flight-control program is completely deterministic and time-constrained, even on

mode control, whenever random signals are applied to all of its inputs. Furthermore, no

part of this program is dependent upon processor number or the value of the real-time

clock. Thus, the flight-control program may be operated in Type B diagnostic mode

without difficulty.

The operating system programs are similarly deterministic under random stimulation of

their inputs , except possibly for nonreplicated tasks--that is, those based on unvoted

data: (a) clock synchronization, (b) error reporting, and (c) reconfiguration. Diagnostic

versions of these three tasks must be created by forcing them into a replicated mode,

namely, by providing them with dummy, randomized input data common to all

processors, then broadcasting the results and voting on the broadcast values, just as if

the task were replicated. Output values are blocked from further action. Specifically:

*In most cases these pseudorandom values will be subjected first to a simple, fixed transformation, in

order to make them more representative of actual values.
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* Synchronization:

Inputs: A set of dummy clockvalues, provided by the pseudorandom

generator in each processor. (Each processor uses the same set of

dummy values.)

Output: A replacement value for one of the clocks.

Condition: Since the processor ID is used on this calculation, it too

must be replaced by a pseudorandom Value.

• Error reporting:

Inputs: A set of dummy voter outputs, provided by the pseudorandom

generator. (Same for all processors.)

Outputs: Processor error report vector.

Condition: Same as above.

• Reconfiguration:

Inputs: A dummy reconfiguration request and task list, both

randomized. (Same for all processors.)

Outputs: Schedule information from the precomputed tables.

Conditions: Only one or a few entries from the schedule tables are to

be generated as outputs on each execution of the diagnostic program,
under control of a randomized table address.

For the presently assumed diagnostic strategy, all tasks (including the clock

synchronization, error reporting, and reconfiguration tasks} perform during diagnostic

executions just as they would normally, whenever faults are discovered, notwithstanding

the fact that some of the diagnostic tests create conditions that are far outside the range

of normal functioning. For instance, a processor is presently deconfigured when a fault

is discovered in a portion of its circuitry or memory that may not be used at all during

the execution of nondiagnostic tasks. This policy appears to be sound, but it should be

reviewed later after additional experience with SIFT.

Type C Diagnostics

This function requires that a special SIFT program be included to detect all known

faults that are not necessarily detected within a reasonable time by regular task

programs (Type A) or the above diagnostic programs (Type B).
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Candidate faults in this group are as follows:

@ Highly time-dependent faults, such as can occur in the data-file priority logic,

associated interrupt logic, the 16 MHz oscillator, and any portions of the 930

that happen to be employed only during execution of the clock-

synchronization task.

• Faults in protection circuitry, such as timeout units and the power-on control

logic.

Highly data-dependent faults, such as those that may affect infrequently used

portions of the schedule tables (e.g., for the case of a small number of

surviving processors) and those that affect possible but unlikely combinations

of error reports.

Faults in circuitry not used in Type A or B programs, such as those in

certain portions of the main and microprogram memories associated with

rarely used instructions.

A few residual faults occurring in particular gates activated only under very

special control conditions. (A few of these have been found by hand analysis

of the processor logic; others might be uncovered by a full-scale logic

simulation [not planned]; still others may turn up during testing as long-

latency faults or faults effectively undetected.)

• Faults in redundant circuitry, such as those in gates that have been paralleled

to increase their fanout capability, and in paralleled filter capacitors.

Specific test conditions have been defined for all of these fault classes except the last.

For this last class, diagnosis is impossible without extensive circuit modifications, which

we feel to be undesirable and unnecessary.

All of the above tests are to be collected in the form of a special diagnostic task

program, to be run in replicated mode, just like other replicated tasks, and at a rate to

be determined.

Some of the Type C diagnostics require small modifications to the operating system itself

in order to provide branching or temporary storage of control conditions not otherwise

needed.

SIFT Status Monitoring

The status of SIFT must be checked at certain points during the testing cycle in order to

(a) measure the times at which error detection and reconfiguration take place, so that

the frequency distributions of fault latency times may be calculated for various fault
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classes and running conditions; (b) distinguish naturally occurring faults from those

deliberately injected, and distinguish any programming or design errors from fault-

induced errors; and (c) provide information needed to trace the propagation of errors due

to faults that have long latencies or are undetected during testing.

The Eclipse MONITR package includes the capability for normally initiated halting and

for reading out the contents of arbitrary memory locations from the halted SIFT.

However, the MONITR has no provision for halting under SIFT-generated conditions.

Test points have been provided for this purpose on the front panel of the processor, but

this means was provided only as a backup; indeed, to use it for triggering Eclipse

interrupts appears to be very awkward. Instead, we recommend a small internal SIFT

program, to be used only during testing, which stores locally selected status information,

in an otherwise unused portion of main memory, for later readout by the Eclipse during

a halt. It will also be necessary to provide flagged branches in the error reporting,

reconfiguration, and (provisionally) clock-synchronization task programs, to cause this

status recording to be initiated whenever the processor is in the test mode (test flag set).

The status information to be recorded, and the times of recording, are as follows:

• Which processors are mup" and which schedules are in current use: on

initialization and whenever there is any change in the schedules in use.

• Error report, and the data-file address of the apparently erroneous data
words: whenever an error is detected.

• Real-time clock value: before and after each fault insertion, fault detection

and reconfiguration, and after each clock synchronization.

• Frame* and subframe numbers: in all cases.

The frame and subframe numbers, in conjunction with knowledge of which schedules are

in use, determine indirectly which program was running when the error detection,

reconfiguration, or synchronization event occurred.

The above functions are performed Separately in each processor. Comparison, and

reduction of the data retrieved from the various processors after halting are carried out

in the Eclipse, after the test results are displayed and before they are archived on disc.

Fault Injection through Simulation

This function requires that one or more selected bits of one or more words in main

memory, data file, transaction file, discretes, or the accessible registers in the 930 be

*The frame count should be chosen so that it is unique over a period of at least three minutes.
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modified on command from the Eclipse. Modification consistsof replacing the selected
bit by a 0, by a 1, or by the binary complement of its current value.

This function might be carried out entirely from the Eclipse, by halting, reading out of

selected word, changing the selected bit, replacing the changed word and restarting.

However, its implementation is best controlled directly from the SIFT end, for the

following reasons:

• The time at which the fault is injected is most properly a function of the

SI_FT cycle time (e.g., frame number) rather than Eclipse time. Obviously

SIFT time is easier to access directly from SIFT.

The simulation of permanent and intermittent faults by modifying registers

or memory contents requires that the fault be reinserted after each occasion

in which the register or memory may have been written over during the

program executions. This reinjection frequency is quite high for some of the

930 accumulators, which may be written into many times in a single

subframe. Again, reinjection is much easier from SIFT than from the

Eclipse*.

For these reasons, it will be necessary to provide, in the SIFT software, a flag (retest

mode M) and branches to a special fault-injection procedure. This procedure will read,

from preassigned locations in the main SIFT memory, the fault-insertion information,

which has been preloaded from the Eclipse. This information specifies which bits of

which words are to be modified and how, and at what frequency. The procedure will

then carry out the recovery bit modifications.

In general, the conversion of transient into permanent or intermittent faults will be

handled (1) by the means just described for repeated transient injection, or (2) by

hardware fault insertion, or (3) by assuming that the modified memory cell has not been

rechanged during program execution, and then checking it at the end of the test.

Method (2) will be used for most nontransient faults in the 930 accumulator and address

registers. Method (3) is deemed to be sufficient for most faults in read-only portions of

the main memory.

Clock Synchronization

A test of the clock-synchronization program may be done (I) by injecting carefully

selected, incorrect values into the RTC, and then monitoring the consequences, or (2) by

*Maintenance of RTC synchronization during halting presented a number of problems, since the RTC

continued to run in a halted processor. The original plan was to read and store each RTC value

immediately after halting, then to fetch and reinsert this value just before restarting. However, this

method introduced skews which appeared to be greater than tolerable. Consequently, the hardware was

modified to freeze the RTC during halting.
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simply reducing the frequency at which the synchronization program is executed, relying

upon the normal rate of clock drift to create the erroneous clock values. The second

alternative is simpler, and appears to be sufficient. The clock resynchronization interval

has been parameterized so that it can be readily changed from the Eclipse during testing.

Overhead for Diagnostics and Testing

The requirements stated in the above sections assume that sufficient main-memory space

and sufficient free subframes are available in SIFT to implement them. At the date of

this writing these conditions appear to be met.
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Appendix B. Synchronizing Clocks in the
Presence of Faults*

1. Introduction

In a fault-tolerant multiprocess system, it is often necessary for the individual processes to

maintain clocks that are synchronized with one another Lamport [15, 161 and Wensley [34].

Since physical clocks do not keep perfect time, but can drift with respect to one another,

the clocks must be resynchronized periodically. Such a fault-tolerant system needs a clock-

synchronization algorithm that works despite faulty behavior by some processes and clocks.

This paper describes three such algorithms.

It is easy to construct fault-tolerant synchronization algorithms if one restricts the type

of failures that are permitted. However, it is difficult to find algorithms that can handle

arbitrary failures - in particular, failures that can result in "two-faced" clocks. As an

example, consider a network of three processes: We would like an algorithm in which a

fault in one of the processes or in its clock does not prevent the other two processes from

synchronizing their clocks. However, suppose that:

• Process l's clock reads 1:00

• Process 2's clock reads 2:00

• Process 3's clock is faulty in such a way that when read by Process 1 it gives the value

0:00 and when read by Process 2 it gives the value 3:00.

Processes 1 and 2 are in symmetric positions; each sees one clock reading an hour earlier

and one clock reading an hour later than its own clock. There is no reason why Processes

1 and 2 should change their clocks in a way that would bring their values closer together.

The algorithms described in this paper work in the presence of any kind of fault, including

such malicious, two-faced clocks. The first one is called an interactive convergence algo-

rithm. In a network of at least 3m + 1 processes, it will handle up to m faults. Its name is

derived from the fact that the algorithm causes correctly working clocks to converge, but

the closeness with which they can be synchronized depends upon how far apart they are

allowed to drift before being resynchronized.

The final two algorithms are called interactive consistency algorithms, so named because

the nonfaulty processes obtain mutually consistent views of all the clocks. The closeness
with which clocks can be synchronized depends only upon the accuracy with which pro-

cesses can read each other's clocks and how far they can drift during the synchronization

procedure. They are derived from two basic interactive consistency algorithms presented

in Lamport [17]. The first one requires at least 3m + 1 processes to handle up to m faults.

The second algorithm assumes a special method of reading clocks, requiring the use of

unfor_eable digital signatures, to handle up to m faults with as few as 2m + 1 processes.

We conjecture that, like the original interactive consistency problem Pease [24], 3m + 1

1 From Larnport[17]
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processes are required to allow clock synchronization in the presence of m faults if digital

signatures are not used. Although we have not been able to prove it, this conjecture is

strongly suggested by the similarity between clock synchronization and interactive consis-

tency. Moreover, the number 3m + 1 arises in the interactive convergence algorithm for

seemingly different reasons than in the interactive consistency algorithm, suggesting some

general principle about the need for (3m + 1)-fold replication to handle m faults.

2. The Problem

Clocks

When discussing clocks, there are two kinds of time that are involved:

real time: an assumed Newtonian time frame that is not directly observable.

clock time: the time that is observed on some clock.

We adopt the convention of using lower-case letters to denote quantities that represent

real time and upper-case letters to denote quantities that represent clock time. Thus, we
will let the "second" denote the unit of real time and the "SECOND" denote the unit of

clock time. Within this convention, we use Roman letters to denote large values and Greek

letters to denote small values. In most applications, "large" times will be on the order of

milliseconds or more and "small" times on the order of microseconds.

It is customary to define a clock to be a mapping C from real time to clock time, where
C(t) -- T means that at real time t the clock reads T. We find it more convenient to define

a clock to be the inverse of this function, so a clock is a mapping c from clock time to real

time, with c(T) denoting the real time at which the clock c has the value T.

Two clocks c and d are synchronized to within 6 at a clock time T if Ic(T) - d(T)l < 6, so

they reach the value T within 6 seconds of one another. This is the kind of synchronization

that is needed for a system such as SIFT [34], in which clocks are used to generate actions.

If two processes' clocks are synchronized to within 6 at time T, then actions generated by
the two processes at that time occur within 6 seconds of one another.

If the clocks are used to measure when events occur, rather than to generate events, then

one is concerned with the difference between the inverse clocks - the mappings from real

time to clock time. It is easy to show that for clocks c and d that run at approximately the

correct rate, if Ic(T) - d(T)l < 6 for all times T in some interval, then IC(t) - Ct(t)l _ 6

for all t in an appropriate interval, where C and C e are the inverse clocks. Hence, our
synchronization algorithms can be used in this situation too.

It is most convenient to consider the clock c to be a function on a continuous interval. The

discreteness of a real clock is modeled as an error in reading the clock.

Definition 1: A clock c is a good clock during the interval [7'1, T2] if it is a monotonic,

differentiable function on [/'1; T2], and for all T in [I"i, I"2]:

I dc 11_(r)- < P12
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We consider a network of n processes, where each process p contains a clock cp. We assume

that these clocks are initially synchronized to within 60 of one another at the "starting

time" T (°), so we have:

AO. For all processes p and q: [c_(T (°)) - cq(T(°))l < 6o

We will not consider the problem of how this initial synchronization is achieved.

A nonfaulty process's clock is assumed to be good. More precisely, we assume:

A1. If process p is nonfaulty during the real time interval [tl, t2], then cp is a good clock

during the interval [/'1, T2] , where cp(Ti) -- ti, i = 1, 2.

Synchronization

In order to maintain synchrony despite the difference in clock rates (two processes' clocks

can drift apart at the rate of up to p seconds per SECOND), the processes must periodically

increment their clocks. To increment a clock c by A SECONDS - i.e., to add A to the

value read from the clock - formally means defining a new clock d by

c'(T) = c(T - A)

For simplicity, we assume that the clocks are resynchronized every R SECONDS. Let

T (i) -- T (°) + iR, and let R (0 be the interval [T (i}, T(_+I)]. Resynchronizing the clocks every

R SECONDS means having each process p use a clock c(_) on the time interval R (i), where

= c (T + (i)

for some constant C_0. We assume that C_ °} = 0, so c(p°} = cp.

For convenience, we introduce the following terminology.

Definition 2: A process p is said to be nonfaulty up to time T (i+l) if it is nonfaulty during

the real-time interval [c(p°)(T(°)),

Note that this interval runs from the time process p is started until the time its clock

reaches the end of the ith synchronization interval R (_).

we require that a synchronization algorithm satisfy the following condition for any i >__0:

Clock Synchronization Condition: There exist constants m, 6, and E such that for

all p and q, if all but at most m processes are nonfaulty up to time T (i+_) then:

SI. If Processes p and q are nonfaulty up to time T (_+1), then for all T in R(i):

Ic )(z)- I < n

$2. If Process p is nonfaulty up to time T (i+_), then:
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Our problem is to find an algorithm for choosingthe valuesC (i+1) such that if the Clock

Synchronization Condition holds for i, then it will hold for i + 1.

Condition S1 is elementary: it states that the clocks are synchronized to within 6. Condi-

tion $2 states that for each resynchronization, a nonfaulty process always increments its

clock by less than _. This is important for two reasons:

• The resynchronization procedure introduces an error of at most _,/R into the average

running rate of the clocks. Hence, a small value of _ means that the processes' clocks

maintain a good approximation to absolute real time.

• The resynchronization can cause a process to move its clock ahead by some amount

A. This means that A SECONDS of clock time have been lost, and none of the events

that the process should have generated during that lost interval can be generated at

the proper time. To prevent this from causing errors, each synchronization interval

must begin (or end) with an interval of length E during which nothing is scheduled

to happen, so the process is idle for _ of every R SECONDS.

If the discontinuity introduced by incrementing the clock is undesirable, then the correction

could be spread over the entire interval R(0 by changing the clock's running rate. Our

results are easily applied to this case by analyzing the difference between an adjusted clock

and the discretely incremented one that we consider.

We place no restriction on the clock of a process that has failed. Thus, we are not con-

sidering the problem of restarting a failedprocess and bringing it into synchrony with the

other processes. This is a nontrivial problem, whose solution depends upon thedetails of

how a process reads other processes' clocks, and is beyond the scope of this paper.

Reading Clocks

Any clock synchronization algorithm requires that processes read other processes' clocks.

We assume that all the reading of clocks and transmitting of information in the compu-

tation of C (_+1) is done in the final S seconds of the interval R(0-i.e., during the interval

S(0---- [T (i+l) - S, T(_+l)]. For our first two algorithms, we require that during the interval

S(0, each process p reads the clock of every other process q with an error of less than E.

More precisely, we make the following assumption.

A2. If the Clock Synchronization Condition holds for i, and process p is nonfaulty up

to time T (i+l), then, for each other process q, p obtains a value Aqp during the
interval S(0. If q is also nonfaulty up to time T (i+_), then

+ A,p)-¢i')(To)]< (2)

for some time To in S (i).

For p -- q, we take Apq -- 0, so (2) holds in this case, too.

The actual method of reading the clocks by which A2 is satisfied is of no concern for our

first two algorithms. It might be possible for p to read q's clock directly, or it might require

some cooperative action by both processes. In the latter case, determining Aqp may require

the synchrony of the two processes' clocks, which is why we assume in A2 that the Clock
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Synchronization Condition holds for i. For our third algorithm, we will make a different

assumption from which it is possible to derive a method of reading clocks that satisfies A2.

Approximations

For real clocks, p can be reduced to the order of 10 -8 or less. We will simplify our

calculations by making approximations based upon the assumption that np<( 1, where n

is the number of processes. This means that we will neglect quantities of order ripe, and

np 2 in our calculations. The reader will be able to check the validity of these calculations

by showing that for an approximate inequality of the form x _ y, the neglected terms are

at most of order npy. Note that the inequality x _ y can be interpreted as x <y' for

some y_ _ y. We also assume R >> _, which is the only case of practical interest.

3. The Interactive Convergence Algorithm

The Clock Synchronization Condition for i implies that if p and q are nonfaulty, then the

clocks c(_) and c_i) will differ by less than 6. Process p can therefore assume that process q
is faulty, and ignore the value of q's clock, if that clock differs from its own by more than

_i. In the interactive convergence algorithm, Process p does that by setting its clock to the

average of all the clocks that are not too different from its own.

The algorithm is based upon the following simple result.

Lemma 1: If SI holds for i and processes p and q are nonfaulty up to time T (_+1), then

[Aqp I _ 6-t-

Proof: Let To and Aqp be as in A2. Writing

c( )(T0+4,,) = +a,,),

it follows easily from $1 and A2 that

Ic(2(T0)- (2(To+ <

The desired result then follows from A1 and the assumption that p <( 1. |

This lemma leads us to the following algorithm, which defines how process p computes the

correction to its clock for the (i + 1) 't synchronization period using the values Aqp obtained

during the i _a period. We assume that there are n processes, numbered from 1 through n.

Algorithm CNV(5): For all p:

C(_+_)-- C (i)+ ApP

where Ap =_ (l/n) _,_, A,p

_,_ _---- if r _ p and [A,p[ < A then A,p
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A _ 6+¢

else 0

Theorem I: If

e3m<n

• 6 _; max ( n'(2e + p(R + 2S')), 6o + pR),

where n' __ n/(n- 3m)

S' =-- (n - m)S/n

• 6 << min(R,E/p)

then Algorithm CNV(6) satisfies the Clock Synchronization Condition with E = A.

Proof: Condition $2 is easy, since Ap is the average of n terms, each less than A. We prove

Condition S1 by induction on i. For i = 0, AI implies that two nonfaulty clocks that are

synchronized to within 60 up to time T (°) will remain synchronized to within 60 + pR at

time T (1) -- T (°) + R. Condition S1 then follows immediately from A0 and the hypothesis.

We therefore assume that SI holds for i and prove it for i+ 1. We begin with the following
lemmas.

Lemma 2: If $I holds for i and process p is nonfaulty up to time T (i+2), then for any II
such that Inl < R and any T in S(1) :

Ic(_)(T + H)- [c(_)(T)+ HII < (p/2)II

Hence, if pH is negligible, then

Proof: This follows easily from A1.1

Lemma 3: If $1 holds for i, and p and q are nonfaulty up to time T (i+2), then for any T

in S(O and any II such that ]H I < R and pII is negligible:

c_)(T + II + Aq,)- c_')(T + II)l _ e + pS

Proof: Letting To be as in A2, we have

+ n + + n)I

-- c(_)(To + Aqp + T- To + H)- c_')(To + T- To + H)

_ lc(_)(T0 + Aqp)-c_O(To) I + pIT- To + rII
[by two applications of Lemma 2]
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e + p iT - T0] [by A2 and the hypothesis that pII is negligible]

The result now follows from the hypothesis that T is in S (0. |

Lemma 4: If 81 holds for i, and processes p, q and r are nonfaulty up to time T (i+2),

then for any T in S(O :

Ic(_)(T)+ _.,-[cT)(T) + _.,l] g 2(_+ pS)

Proof: It followsfrom Lemma 1 that ]A_p[ and ]Aqs, [ are both lessthan A, so A,p -- A,p,

_,q -- A,q, and pA,p and pA,q are both negligible.We thereforehave:

]_)(T)+ _..- [_(,')(T)+ _.,1[

= [_(_)(T)+a..- [¢(,')(T)+a.,][

[c(_)(T + A,p)--c_O(T + A,,)I [by Lemma 2]

< I¢(r+ I+ +
g 2(e + pS) [by Lemma 3]

proving the result. |

Lemma 5: /f $I holds for i, and Processes p and q are nonfaulty up to time T (i+2), then

for any r and any T in S (0'

Proof: By the assumption that S1 holds for i, we have:

[¢(_)(T)- _(,')(T)I <

Since A,p[ and IX,,[ are by definition no larger than A, the result follows immediately. |

We now complete the proof of the theorem. Assume that processes p and q are both

nonfaulty until time T (i+2}. For notational convenience, let T denote T (_+1). For any T' in

R (i+l) we have:

[c_+i,(r)- _(,'+')(r)[ < ]_V+')(T)-c(.'+')(T)[+ pR

= ]c_)(r + Ap)- c_O(T + Aq) I + pR

= I(_/n)E,"==,(<7)(T)+ _,,,

[byA11 "

[from the algorithm]

[by Lemma 2, since IA_I, 14,1 < A]

-lc(')(T) + + pR

[by definition of Ap and Aq]
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s (1/.)E,=, ]_)(r)+_,_-[_')(T)+ _,_1[+pn
(1/.)[2(n-,.)(E + ps) + ,.(6 + 2A)]+ pR ,

where the last inequality is obtained by applying Lemma 4 to the n - m nonfaulty pro-

cesses r and Lemma 5 to the remaining m processes. Since A _ 6 + ¢, a little algebraic
manipulation shows that if

6 _ .'(2_ + p(R+ 2S'))

then:

l[2(n--m)(_+pS)+m(6+2A)]+ pR _ 6
n

Combining this with the above string of inequalities, we see that for any T t in R(i+l):

[c(_+*)(r)-ci'+')(r)[ g 6 ,

so S1 holds for i + 1. This completes the proof of Theorem I. |

For any clock synchronization algorithm, we will have 6 __ 61 +pR, where 6x is the closeness

with which the clocks can be resynchronized and pR is how far they can drift apart during

an R SECOND interval. In the interactive convergence algorithm CNV(6), there is a term

(n'- l)pR in 61, so how close the clocks can be resynchronized depends upon how far apart
they are allowed to drift.

4. Interactive Consistency Algorithms

The obvious approach to fault-tolerant clock synchronization is to let each process read

all the processes' clocks, and set its own clock to some function of the values that it read,

such as the median. If a majority of the clocks are "good," then the median will be a

good clock, so all the processes will synchronize to the same good clock. However, as the

example of the "two-faced clock" shows, this assumes that any two nonfaulty processes

get approximately the same value when reading any clock. In fact, it requires that the

following two conditions hold for every process r:

1. Any two nonfaulty processes read approximately the same value for r's clock - even
if r is faulty.

2. If r is nonfaulty, then every nonfaulty process reads approximately the correct value
of its clock.

If we replace "reading process r's clock" by "obtaining General r's order," then these

conditions are very similar to the approximate Byzantine Generals problem discussed in

Lamport [17]. In fact, the two interactive consistency synchronization algorithms we de-

scribe are derived from the two algorithms for a completely connected network given in
Lamport [17].

When p reads r's clock, what it actually finds is a constant &r_ such that
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(The values _,p are not the same ones defined in the interactive convergence algorithm.)

We also allow the possibility that if r is faulty, then p may not be able to read r's clock.

This is denoted by letting A,p have the special value NULL. Recalling the definition of

Aqp given by A2, and letting a NULL clock be approximately equal only to another NULL

clock, we see that the above two informal conditions can be stated precisely as follows:

CC. For some constant l] << R and all i: if the Clock Synchronization Condition holds

for i, then for any processes p and q that are nonfaulty up to time T(_+2):

I. For all r _ p, q: either

(al + < or
(b) A, v -" A,q "--NULL

2. A,n _ NULL, and IA,n-A,n [ < f_.

For convenience, we let A_ -----0 for all p. Condition CC2 is then equivalent to CCI(a) for

r---q.

Before stating our next result, we introduce some notation. We let N denote the set

{1,..., n}. A multiset is a set in which the same element can appear more than once. We

use ordinary set notation for describing multisets, so the multiset {1, 1, 2} contains three

elements, two of which are equal. The multiset {ai " i E N} contains n elements, not all

of which need be distinct. If M is a multiset, then "medianM" denotes the median of M,

defined by

medianM -- al,/_ j ,

where M = (al,...,a,} with al _< a2 __ ... _< a,.

Our two interactive consistency algorithms are based upon the following result.

Theorem II: If m <_ ln/2J, 6o < l] + e + pS, and CC holds for all i, then letting

where

c_+')(T) -- c(i)(T + A,)

Ap _ median{A,p • r E N and A,p _ NULL}

satisfies the Clock Synchronization Condition for all i, with

_ ,_ f_+e+p(R+S)

E _ 2(f_+e)+p(R+S)

The proof of Theorem II requires the following two results about medians.

Lemma6: /fla,-b, I < rrfor allrEN, then:

Imedian{a, : r 6 N} - median{b, • r E N}I < lr
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Proof: We prove the stronger result that for any k: the k th highest values of the multisets

{a,} and {b,} lie within rc of one another. Let the permutations _ and 3 be chosen such
that:

a_(l) ___ac_(2) <_ ... _< a_(.)

bz(l) _< bp(2) _< ... _< bB(. )

We prove that for all k: [a_(k)- bB(k)[ < _r.

We consider the two cases k _ 1 and k > 1. For k -- 1 we have:

a_(x) < aB(l ) [by definition of _]

< bB(l ) + 7r [by hypothesis]

Symmetrical reasoning shows that

bB(1) < a_(l) + _r

and combining the two inequalities gives

a_(l) -- b_(l)[ < _"

proving the result for k -- 1.

For k > 1, consider the two multisets A ---- Ca(l),..., or(k-l)} and B ---- {_(1),..., _(k-
1)}. If these two multisets are equal, then applying the result for k -- 1 to the two multisets

{%t,) " r > k} and {b_(,) • r > k} yields the desired result. We therefore assume that

A_B.

Let _(k') be an element of A that is not in B, so a(/d) --/3(k") for k" _> k. We have:

bB(k) < bB(k,, )

-- b_(k,)

< ao(k,) + _"

< ao(k) + r

Symmetrical reasoning shows that

[since k </d']

[by hypothesis]

[since k' < k]

and combining these two inequalities gives the desired result. |

Lemma7: If [a,-a I < _r for a majority of values r inN, then

[medianCa,:rEN}-a I < _r.

Proof: It is easy to see that if A is any submultiset containing a majority of the elements
of Ca,}, then:

min(A) _ medianCa, : r E N} < max(A)

Letting A be the multiset {a, : [a, - a I < a'}, this implies that

a-_" < median{a,} < a+rr,
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which proves the lemma. 1

Proof of Theorem If:The proof isby induction on i.For i-- 0, the resultistrivial(Note

that $2 isvacuous for i -- 0.) Assume that the theorem istrue for i.By CC2 and Lemma

1,we see that

for allnonfaulty p and q, so $2 follows easilyfrom Lemma 7.

Since Ap is the median of the A,p, and a majority of the processes r are nonfaulty, the

above inequalityshows that we can neglect terms of order pA_, and likewiseterms of order

pAg. Lemma 1 implies that we can neglect terms of order pAqp. Letting T _ T (i+l),we

then have:

= ]c(_)(T+ A_)- c_)(T + Aq)[ [by hypothesis]

= + + +

[c(_)(T + Aqp)+ Ap - Acp- [c_)(T) + A_I ] [by Lemma 2]

<[Ap- A_p- Aq[ +E + pS [by Lemma 3]

= [median{_,_- Z_', S N and_,_ ¢ NULL}

-- median{A,q • r E N and _,q _ NULL}[ + e + pS

ft+E+pS

Condition S1 follows easily from this inequality and A1. l

[by CC and Lemma 6]

The Algorithm COM

Achieving Condition CC requires that the processes not only read each other's clocks, but

also send values to one another. If xp is a value that process p sends to the other processes,

then we let xpq denote the value that q receives from p. The manner in which the value is

transmitted is irrelevant - the value might be sent as a message from p to q, or p might

leave it in some register where q can read it. We assume that if p and q are both nonfaulty,

then Xpq -" xp. If p or q is faulty, then Xpq may have any value.

Our first interactive consistency algorithm is based upon the following algorithm by which

process q obtains a value COM(m, P, xp, p)q from process p. It is essentially the same as

Algorithm OM(rn) of Lamport [17], except that whenever a process r receives a value from

process s, it adds A,, to that value before using it or relaying it to other processes. This

is done because a value held by process r represents the difference between r's clock and

p's clock. The algorithm for obtaining the value COM(m, P, xp, p)q is defined inductively

as follows, where we write P - p to denote P - {p}, for any set P.

Algorithm COM: For any integer rn >_ O, any subset P of N, any value xp and any
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p, q6P:

COM(0, P, Xp, p)q _ xpq nu Apq

COM(m, P, xp, p)q -- median{COM(m -- 1, P -- p, xp, + Ap,, r)q • r E P -- p}

To prove the required properties of Algorithm COM, we need the following result.

Lemma 8: If $1 holds `for i, and processes p, q and r are nonfaulty up to time T(_+_),
then:

[Apt+A,q--Apq] _< 3e+2pS

Proof: Let T be the time, obtained from A2, such that

+ ap.)I <
We then have:

[Ap, + A,q - Apq]

_< + a. + a..) - + a.) I

S3E + 2pS

which is the required result. II

The following result is the analogue of Lemma 1 of Lamport [18].

[by Lemma 2]

[by A2 and Lemma 3]

Lemma 9: For all m and k, if n > 2k + m, S1 holds for i, and all but at most k processes

in P are non faulty up to time T (i+2), then for any of those non`faulty processes p and q,
and any xp:

ICOM(m,P, xp, p)q - [xp + Apq]l _ m(3, + 2aS)

Proof: The proof is by induction on m. The result is trivial for m _ 0. Assume it for

m -1. For any process r in P-p that is nonfaulty up to time T (_+2), we have:

ICOM(m - I,P-p, xp, +Apr, r)q--[xp + Apq]l

--- [COM(m - 1, P - p, xr_ + At, r)q - [xp, + Ap, + A,q]

+lAp, + A,q -- A,q]l [since p and r nonfaulty implies xp, -- xp]

(m - 1)(Ze + 2pS) + (Ze + 2pS)

where the last inequality comes from Lemma 8 and the induction hypothesis, which can

be applied because P - p has n - 1 elements and n - 1 > 2k + (m - 1). Therefore, for
every nonfaulty process r, we have

]COM(m - 1, P - p, xpr + Ap,, r)q -- [Xp d- Apq]] _ mr3, q- 2pS)
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The lemma now follows from Lemma 7, since n > 2k + m > 2k + 1.1

Our next lemma is the analogue of Theorem 1 of Lamport [17].

Lemma 10: If $I holds for i, and P is a set containing more than 3ra processes, all but

at most m of which are nonfaulty up to time T (i+2), then for any of the nonfaulty processes

p and q:

1. For all r in P:

ICOM(m,P,x.,r).- [Aqp + COM(m,P,z.,r)ql] _ (2m + 1)(34 + 2pS)

2. ICOM(m,P, xq, q)p-- xq- Aqp I _ m(ae + 2pS)

Proof: Part 2 follows immediately from Lemma 9 by letting k -- m. Part 1 is proved

by induction. For m ---- 0, it follows easily from the definition of COM and Lemma 8.

Let m > 0 and assume it holds for m - 1. We consider two cases: (i) r faulty and (ii) r

nonfaulty.

If r is faulty, then there are at most m - 1 faulty processes in P - r, and we can apply the

induction hypothesis to obtain:

[COM(m - 1, P - r, x,,, s)p -- Aqp -- COM(m - 1, P - r, Z,o, S)q I

(2(m - 1) + 1)(3E + 2pS)

for any s in P - r. The result now follows easily from Lemma 6.

If r is nonfaulty, then we can apply the inequality from part 2 to obtain:

ICOM(m, P, x,, r)p - Ix, + z ,,ll m(3, + 2ps) (3)
ICOM(m, P, x,, r)q - [x, + A,q] I _ m(3e + 2aS)

We then have:

ICOM(m, P, x,, r)p - Aqp -- COM(m, P, x,, r)q]

--ICOM(m,P,x,,r)n-[x, + A,nl - (COM(m,P,x,,r)q-[x, + Arq])

h-Arp -- Arq -- Aqpl

2m(3E + 2pS) + (3e + 2pS)

where the last inequality follows from the triangle inequality, (3) and Lemma 8. This

finishes the proof of part 1 for m. 1

Taking x, -- 0, Lemma 10 yields the following result.

Theorem HI: If all but at most m processes are nonfaulty up to time T (i+2), and n > 3m,

then Condition CC is satisfied by

_qp --- COM(/TI, N, O, q)p ,

with f_ _ (2m + 1)(3e + 2pS).

Combining this with Theorem II yields our first interactive consistency clock synchroniza-

tion algorithm, with
_f _ (6m + 4)_ + (4m + 3)pS + pR

E ,_ (12m + 8)_ + (8m + 5)pS + pR
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This algorithm requires that n be greater than 3m-i.e., that more than two-thirds of the

processes be nonfaulty. It can be shown that given an algorithm to achieve Condition CC,
one can construct a solution to the approximate Byzantine Generals Problem described in

Lamport [17]. This means that any interactive consistency algorithm that does not use

digital signatures cannot work unless more than two-thirds of the processes are nonfaulty.

The Algorithm CSM

Our second interactive consistency algorithm is derived from algorithm SM of Lamport

[17]. Each process p sends a message to every other process stating that its clock has

reached a certain value Tp, and these messages are relayed among the other processes.

To use such messages for synchronizing clocks, the message transmission dCay must be

known. We therefore make the following assumption, which replaces A2.

A2'. If an event in a process q occurring at (real) time to causes q to send a message to
a process p, then that message arrives at a time tl such that:

(a) if p and q are nonfaulty, then:

Itl-to-71 < E

(b) t_-to > _-

for some constant 7 such that npq is negligibly small.

Assumption A2'(a) states that the time taken by a nonfaulty process to generate a message

and transmit it to another nonfaulty process equals 7 4-e. Part (b) states that a faulty

process cannot generate and transmit a message in any less time, but it can take longer.

In practice, the value of 7 may depend upon p and q and on the type of event generating

the message. To avoid having to cope with all these different values, we assume a single 7
for all messages.

As with Algorithm SM of Lamport [17], we need to send unforgeable signed messages, so

we must assume a method for generating digital signatures. A digital signature mechanism

consists of a function Sp for each process p, satisfying the following condition:

A3. For any process p and any data item D:

(a) No faulty process other than p can generate Sp[D].

(b) For any X, any process can determine if X equals Sp[D].

We refer the reader to Lamport [17] for a discussion of how digital signatures are con-

structed. Note that the first assumption is stronger than the one made in Lamport [17],

since it does not permit one faulty process to forge the signatures of another faulty process.

Assumption A3(a) means that a faulty process cannot generate any arbitrary value, so it

restricts the class of faults that may occur. Hence, we can hope to find a clock synchro-

nization algorithm to handle m faults with fewer than 3m + 1 processes, and, indeed, our

second interactive consistency algorithm requires that only a majority of the processes be
nonfaulty.

We define the message M(T, po ... p,), for any sequencep0, ... ,p, of processes- including
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the null sequencek - as follows:

M(T, k) _ (T, po, S_(T))

M(T, po ... po) _- ( M(T, po ... Po-I), P°, Sp,[M(T, po ... p0_l)])

By A3(a), the value M(T, Po ... P°) can only be generated as the result of process p0 sending

the message M(T, po) to process Pl, which sends the message M(T, popl) to process P2 ...

which sends the message M(T, Po ... Po-_) to process po, which generates M(T, Po ... Po).

Moreover, A3(b) implies that any process can determine whether a given data item X

equals M(T, po ... Po) for some T and P0 ... Po.

In Algorithm CSM, for some time Tp in S (i), process p sends the message M(Tp, p) to all

other processes when its clock reaches 7"9. Immediately upon receiving this message, each

other process Pl sends the message M(Tp, ppl) to all processes other than itself and p, and

so forth. Any process q will therefore receive messages M(Tp, ppl ... po) for many different

sequences Pl ... Po. Each such message tells q that p's clock read Tp approximately (s + 1)_/

SECONDS ago. If p and all the Pl are nonfaulty, then this message is correct. If one or

more of the Pi are faulty, then they can either fail to relay the message, so q never receives

it, or they can delay it. However, they cannot alter the value of Tp or cause the message

to arrive too early. Hence, process q believes the message indicating the earliest time at

which p's clock reached 7"9.

There is a practical problem in implementing this approach. In order to perform the

appropriate message relaying, a process must be prepared to receive the incoming message.

This may require that the process not do anything else while waiting, so it should know

when the message will arrive and be able to ignore the message if it does not arrive when it

should. Since the uncertainty in message transmission time is e, and the difference between

p's clock and q's clock is 6, q can expect to receive the message M(Tp, p) within about e+6

seconds of when its clock reads Tp + 1. If q only relays this message if it arrives when it

should, then another process r can expect to receive the message M(Tp, pq) within about

2(e+6) of when its clock reads T_+2"y. Continuing, this leads us to the following definition:

Definition 3: The message M(T, Po ... P°) is said to arrive on time at Process q if either

1. s > 0 and the message arrives at (real) time c_i)(Te), or

2. s = -1 (so Po ... P° is the null sequence) and T _ -" T

and IT'-T-(s+xbl < (s+I)(6+e).

The 6 in this definition is the same one as in the Clock Synchronization Condition. Its

value will be given later.

The following algorithm describes how each process q determines the value Apq for every

p yA q.

Algorithm CSM(m): For each process p, and for some clock time Tp in S (i}"

1. When its clock c(_) reaches Tp, process p sends the message M(Tp, p) to every other

process.

2. For each process q _ p:

A. Process q initializes Apq to c_.
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B. If the message M(Tp, ppt ... P,) arrives on time at q, at time c(qO(T), and T- T n-

(s + 1)q < Apq, then:

(a) Process q sets Apq equal to T - Tp - (s + 1)q.

(b) If s < m, then immediately upon receiving this message, q sends the message

M(Tp, ppo.., p,q) to every other process _ not contained among the processes

PPo ... P°.

C. At time Tv + (m + 1)(q + 6 + e), if -_pq -- c_, then p sets _vq equal to NULL.

We have assumed A2' instead of A2, so the values Aqv are not yet defined. In order to

apply Theorem 11, we must define the Aqp and prove A2.

Lemma 11: Assumption A2 is satisfied, except with the strict inequality replaced by

approximate inequality, if Aqt, is defined to equal T - Tq - q, where T is the value such

thatp receivesthemessageM(Tq, q) at time c_O(T),and to haveanyvalueif p receives no
such message.

Proof: If p and q are nonfaulty, then the message M(Tq, q) is sent by q and received by p.

Taking To -- Tq, we find

= leVItT-,_)- c_'ltT_)[

[c{p0(T)- q - c_O(Tq) I [by Lemma 2]

<E [by A2'(a)]

which proves the lemma. II

Lemma 11 allows us to use the earlier results that assumed A2. (Since these results all

involve approximate inequalities, they are not invalidated when the exact inequality in A2

is replaced by an approximate inequality.) We now prove the main result for Algorithm
CSM.

Theorem IV: If all but at most m processes are nonfaulty up to time T(i+2), then the

values Apq found by algorithm CSM(m) satisfy condition CC with f_ _ (m + 5)e + 2pS.

The proof uses the following lemmas.

Lemma 12: Let $1 hold for i, and let p and q be nonfaulty up to time T (I+2}. If the message

M(T, po ... P,) arrives on time at p, and s < m, then the message M(T, po ... P,p) arrives
on time at q.

Proof: Let c_)(T') be the time at which M(T, po ... P°) arrives at p, letting T ' --- T if

p0 ... p, is the null sequence, and let c(_O(T") be the time at which M(T, po ... p°p) arrives

at q. Then

loll(T")- c_'l(T,+ w)l

Ic_lT"l- c_'_lT")-



161

_+6

It follows from A1, and the assumption that p,_ is negligible, that:

[T'-T'-71 _ 6+_

[by $1]

[by A2]

(4)

We then have:

IT n - T-(8 + 2)_/)]

< IT" - T - "/[ + IT'- T- (s + 1)'7 I

6 + _ + (s + 1)(6 + _)
[by (4) and the on-time arrival of M(T, Po ... P,)]

which implies that M(T, P0 ... P,P) arrives on time at q. II

Lemma 13: If $1 holds .for i, all but at most m processes are nonfauity up to T (I+2),

and p and q are among the nonfaulty ones, then for any process r: if A,p _ NULL then

A,q _ NULL and

A,q + Aqz, _ A,p + (m + 3)e + pS

(For r = q or p, A, is defined to be 0.)

Proof: Let ro = r, and let T be the time such that

A,p ----- T - T_ - (s + 1)7 (5)

and the message M(T,, ro ... r,) arrived at p (on time) at time c_)(T). (If r _---p, so s -- -1,

then T -- T,.) We consider two cases:

1. q=rj

2. q not in the sequence ro ... ro.

In case 1, it follows from A3(a) that the message M(T,, ro ... rj-l) must have arrived on

time at q at some time c(ql}(Tt), so _,q _ NULL, and

A,q _( T'-7",-Jr (6)

A simple induction argument using A2'(b) shows that

c_)(T)-c_O(T')-(s-j + 1)7 > -(s-j + 1)_ (7)

We then have:

c_')(T) - c(qi)(T t + (s - j + 1)_/- Aqp) -_ - pS [by Lemma 3]

c_)(T)- c_i)(T ') -(s- j + 1)7 + Aqp-_- pS [by Lemma 2]

)> -(s - j + 2)c - pS + Aqp [by (7)]
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By A1, thisyields:

T- (T' + (s - j + 1)'7) _ -(s - j + 2)_ - pS + A,,

SO

T' - j'/+ Aq_ _ T - (s + 1)'7 + (s - j + 2)_ + pS

Subtracting 7', from both sides of this inequality, we see that (5) and (6) imply:

m

Arq @ Aqp _ A,_ + (s - j + 2)_ + pS ,

which yields the desired result, since s _< m.

For case 2, q not equal to any of the ri, we consider two subcases: s < rn and s = m.

If s < m, then p sends_ q the message M(T,, ro ... r,p), which, by Lemma 12, arrives on
time at q. Hence, A,q # NULL and

< 7' - T, - (s + 2)'/

where c_O(T ') is the time at which the message arrives. We then have:

c(_)(T' + Aqp) - c(pi)(T)- "7

c_0(T') - c(pO(T) - ,7 + _ + pS

< 2e + pS

This implies that

which can be rewritten as

Tl + Aqp-'/- T _ 2¢ + pS

(8)

[by AI]

[by Lemma 3]

[by A2'(a)]

T' - (s + 2)-/+ Aqp _ T - (s + l)-_ + 2_ +pS

Subtracting T, from both sides of this inequality shows that the desired result follows

immediately from (5) and (8).

Finally, we consider the case s = m, where q is not one of the rj. Since there are at most

m faulty processes, there is at least one process rj that is nonfaulty up to time T (_+2). Let

c_O(T ') be the time at which r i received the message M(T,, r0 ... rj_t)-or at which it sent

the message M(T,, r), if j -- 0. The same argument as before shows that (7) again holds.

By Lemma 12, the message M(T,, ro ... rj) arrives on time at q, so A,q # NULL, and

A,, _<T"- T,- (j + 1)'/ , (g)

where c_O(T ") is the time at which the message arrives. By A2'(a} we have

c_i)(T")-c_i)(T')-'/ < e
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and combining this with (7) yields:

c_)(T) - c(')(T n) - (s - j)'7 > -(s - j + 2)4

Using Lemma 3, we can deduce from this that

c_)(T)_ c_)(T _ + Aqp)--(s -- j)7 _ --(s -- j + 3)4 -- pS

Since p(s -j)'7 is negligible, this implies by A1 that

T - T" - A o -- (s -- j)q _5 --(s -- j + 3)e -- pS

which can be rewritten as

T" - (j + 1)'7 + Aqp _ T - (s + l)ff + (s - j + 3)e + pS

Subtracting 7", from both sides, we obtain the desired result from (9) and (5). II

Proof of Theorem IV: Let p, q be as in Condition CC. It follows easily from Lemma 12 that

_qp _ NULL. Condition CC2 then follows from CCI(a) for r = q. It therefore suffices to

prove CC1 for all r. This requires proving that if A,p _ NULL, then A,q _ NULL and

A,p - Aqp - _,_ _(m + 5)_ + 2pS

Krq+Aq_-K,v _(m+5)4+2pS

The fact that A,q _ NULL and the second inequality follow from Lemma 13. Reversing

p and q in Lemma 13, we obtain,

_rp+ Apq--_r¢ _ (m+3)_+pS

To prove the theorem, we therefore need only show that

[Ap_ + Aqp[ _ 2_ + pS

We write

<_I¢(n + + ¢(n-
_+_+pS

where To is as in A2, and the result follows from A1. l

Combining Theorem IV with Theorem II gives an interactive consistency algorithm with

6 _, (m+f)_+3pS+pR

E _ (2m+12)e+5pS+pR

This is the value of 6 that should be used in the definition of on-time arrival.

[by A2 and Lemma 3]
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5. Conclusion

We have described three clock-synchronization algorithms. The interactive convergence al-

gorithm CNV is the simplest, requiring only that every process read every other process's

clock. The interactive consistency algorithms require a great deal of message passing -

Algorithm COM generates approximately n m+l messages, while Algorithm CSM generates

at most that many, but on the average generates approximately (n/2) "+l messages. Al-

gorithms CNV and COM require that more than two-thirds of the processes be nonfaulty,

while Algorithm CSM requires only that a majority be nonfaulty. However, Algorithm

CSM assumes a digital signature mechanism and a known message transmission delay.

To compare the closeness of synchronization achieved by these algorithms, we assume that

pS << e. This is a reasonable assumption, since, for most practical applications, E will be

on the order of microseconds, S, at most a few milliseconds, and p _ 10 -6. To simplify

comparisons with the interactive convergence algorithm, in which 6 depends upon n, we

assume that n -- 3rn + 1, This will be the case if the only reason for having multiple

processes is to achieve fault-tolerance through redundancy. We then get the following
values of 5:

Algorithm CNV: (6rn + 2)_ + (3m + 1)pR

Algorithm COM: (6m + 4)E + pR

Algorithm SCM: (rn + 6)E + pR

This shows that Algorithm SCM achieves the closest synchronization, especially for m > 1.

If R is small enough - i.e., if the clocks are resynchronized often enough - then Algorithm

CNV can achieve slightly better synchronization than Algorithm COM. However, one

usually wants to resynchronize only as often as is necessary to achieve a desired value of

6. If this value of 6 is much larger than 6me, then it is necessary to synchronize 3m + 1

times more often with Algorithm CNV than with the interactive consistency algorithms.

For example, if m -- 2, _ ---- 2 microseconds, p --- 10 -6, and 6 -- 50 microseconds, then we

obtain the following resynchronization intervals R:

Algorithm CNV: 3.1 Seconds

Algorithm COM: 18 Seconds

Algorithm SCM: 34 Seconds.

We suspect that, in most applications, Algorithm CNV will provide sufficiently short resyn-

chronization times. Its more serious drawback will be that it requires two-thirds of the

processes to be nonfaulty in order to guarantee synchronization. When this is not satis-

factory - for example, when using three-fold redundancy to protect against a single fault

- Algorithm SCM must be used.

We have assumed a system in which each process can communicate with all the others,

and have considered only process failure, not communication failure. Our interactive

consistency algorithms can be generalized to incompletely connected networks of processes.

In the same way that Algorithm COM was derived from Algorithm OM(m) of Lamport

[17], Algorithm OM(m, p) of Lamport [17] and the algorithm of Dolev [3] can be used to

obtain clock synchronization algorithms for incompletely connected networks. It can be
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shown, that for a network of diameter d, Algorithm CSM(m) satisfies Theorem IV, except

with the maximum number of faulty processes reduced to m - d + 1.

In algorithms not using digital signatures, the failure of a communication line joining two

processes must be considered a failure of one of the two processes. Indeed, a two-faced

clock is perhaps more likely to be caused by communication failure than by failure of

the clock itself. For Algorithm CSM, assuming that a faulty communication line cannot

"forge" properly signed messages, a faulty communication line is equivalent to a missing

one. Hence, Algorithm CSM(m +d-1) can handle up to m process faults plus any number

of communication line failures, so long as the remaining network of nonfaulty processes

and communication lines has diameter at most d.
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Appendix C. Summary of the SPECIAL
Specification Language

1. Introduction

This Appendix presents a brief tutorial on the SPECIAL specification language. A more

detailed description may be found in Weinstock [30]. Isner [14] gives a very readable

tutorial to data abstraction and specification, using a SPECIAI_like notation, and

Robinson, et al., [26] presents a substantial example of an operating system specification

in SPECIAL.

2. General Characteristics

SPECIAL permits a computer program or system to be described in terms of operations

on externally visible state variables, called "items" or "objects" The operations are

defined as state transitions, which are described as functions over well-defined sets of

values of the objects. The specifications may be hierarchical, so a given set of states and

state transitions may represent a large number of states and state transitions that are

invisible at that level. A specification may be looked upon as the instruction set of an

abstract machine, and a specification hierarchy may be looked upon as a set of interface

descriptions for a hierarchy of abstract machines, in which lower level machines

implement the state transitions defined at higher levels.

A specification of the kind produced by SPECIAL serves to hide design details that are

not essential to an understanding of the system's intended behavior. SPECIAL is thus

not a programming language (e.g., successive statements are not "executed" and have no

sequentiality) and should not be used as such.

The heart of a SPECIAL specification consists of collections ('modules') of functions of

various kinds (called V-, O-, and OV-functions). These functions are defined in terms of

effects on objects, and the effects are stated as mathematical expressions.

SPECLkL is a "typed" language in that a type (a well-defined set of values) is associated

with each item when declared, thus permitting subsequent appearances of the items in a

specification to be checked for consistency with their declared type. The type

INTEGER* (a primitive type of SPECIAL) has, as values, all of the integers--positive

and negative (including zero). The type BOOLEAN (also a primitive type of SPECIAL)

has, as values, TRUE and FALSE. Although not needed for this example, there are

additional primitive types. New types, e.g., sets, vectors, structures (records), subtypes,

may also be constructed out of existing types.

*All reserved words are in capital letters.
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One or more types noted as designator types can be associated with a module. The

values of these types, called designators, serve as names for abstract objects of the

module. The interface description of a module lists all of its designator types. For

example, the "stacks n module interface description, illustrated in Figure C-1, declares

the designator type mstack_namem (an abbreviation for name-of-stack).

Following the designator types, the interface description lists the module's parameters.

A parameter of a module is a symbolic constant which, upon initialization of the module,

acquires a value that is not subsequently changed by any operation invocation. The

parameter mechanism enables a module specification to have some generality. Often a

module can appear in different machines in the hierarchy, with a different value for the

parameters. Another reason for leaving the values of parameters unbound at

specification time is that they are often dependent on the values of lower-level

parameters, in a manner that is not decided until later stages. The "stacks" module has

the single integer-value parameter "max stack_size', whose value is the maximum

number of elements that can be in a stac-k. The reader should observe that we have

made the decision for this example that all stacks of the module are of the same fixed
size.

The interface description for a module is a list of its operations. Depending on whether

its invocation returns a value and/or causes a state change, an operation is declared to
be one of the following three kinds:

• V-function (VFUN) -- returns a value, but causes no state change.

• O-function (OFUN) -- causes a state change, but does not return a value.

• OV-function (OVFUN) -- returns a value and causes a state change.

The Ustacks" module has two operations:

• upush" -- causes an integer v to be placed on top of stack s. *

• "pop" -- causes the integer value v on the top of the stack s to be removed
and returned.

The reader should note that the decision to provide integer stacks is manifested by

declaring the second argument of "push" and the returned value of "pop" to be of type

INTEGER. The remaining sections describe the detailed features of the language.

*Hereafter we will refer to "stack s" as a shorthand for "the stack that corresponds to the designator
S".
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MODULE stacks $( maintains a fixed number of stacks of integers,
each of the same fixed maximum size)

TYPES

stack_name: DESIGNATOR $( names for stacks) ;

PARAMETERS

INTEGER max_stack_size $( maximum size for a given stack) ;

FUNCTIONS

VFUN ptr(stack_name s) -> INTEGER i; $( stack pointer, or
number of elements, of stack s)

HIDDEN:
INITIALLY

i--O;

VFUN stack_val(stack_name s; INTEGER i) -> INTEGER v;
$( v is the ith value of stack s)

HIDDEN;
INITIALLY

vmg.

OFUN push(stack_name s;.INTEGER v);
$( puts the value v on top of stack s)
EXCEPTIONS

stack_overflow : ptr(s) - max_stack_size;
EFFECTS

'stack_val(s, 'ptr(s)) - v;
'ptr(s) '- ptr(s) + 1:,

OVFUN pop(stack_name s) -> INTEGER v;
$( pops the stack s and returns the old top)
EXCEPTIONS

stack_underflow : ptr(s) - 0;
EFFECTS

'stack_vai(s, ptr(s)) - ?;
'ptr(s) - ptr(s) - 1;
v - stack_val(s, ptr(s));

END_MODULE

FIGURE C-1 SPECIFICATION OF THE STACKS MODULE
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3. Expressions in SPECIAL

SPECIAL operations are defined in terms of expressions. Each expression is of a

particular type, characterizing the type of the values returned by the expression.

Expressions are constructed using constants, variables declared in the specification, built-

in functions and connectives of the language, functions (O, OV, and V) of the module

being specified, and additional functions declared to produce a more readable

specification. The following are examples of types of expressions supported by
SPECIAL.

Arithmetic Expressions

The value returned by an arithmetic expression is of type INTEGER or REAL. An

arithmetic expression is a single constant, a variable or a user-defined function of type

INTEGER or REAL, or is built out of existing arithmetic expressions using the

operations re+u, u,_, _.., ,/_.

Boolean Expressions

The value returned by a boolean expression is of type BOOLEAN. The constants TRUE

and FALSE are boolean expressions, as are variables and functions declared to be of type

BOOLEAN. The operations AND, OR, ",--_ (NOT) and "--_" (IMPLIES) are used to

construct new boolean expressions from existing boolean expressions.

Relational Expressions

Using theinfixrelationaloperators(nameiy ,--., .<o, .<--._ , .>., .>_m_ , _..____,),

boolean expressions are constructed from existing expressions. For "--" (or "_-._---'), the

resulting expression is of the form A -- B (or A ._--- B) where A and B are required to

have the same type. For the other operators, each of the two component expressions is
required to be of type INTEGER or REAL.

Conditional Expressions

A conditional expression is of the form IF P THEN Q ELSE R, where P is of type

boolean, and Q and R are of the same arbitrary type. The type of the resulting
expression is the type of Q (or R).

Quantified Expressions

To express properties relating to a large number of values, SPECIAL provides quantified

expressions in the first-order predicate calculus. The universal quantified statement is
written as



171

FORALL x I P(x): Q(x)

or

FORALL x: P(x)-->Q(x).

The meaning is "For all values of x such that P(x) is true, Q(x) is also true." Clearly,

P(x) and Q(x) are of type BOOLEAN, as is the type of resulting expression. The

variable x can be of any type, usually declared prior to its introduction in the

specification.

The existentially quantified statement is written as

EXISTS x I P(x): Q(x),

which has the meaning "There exists a value x such that, if P(x) is true, then Q(x) is also

true."

4. Role of "?" in SPECIAL

SPECIAL provides the particular value UNDEFINED (abbreviated as "?') to stand for

"no value'. It is used in a specification where the designer wishes to associate the

absence of a meaningful value with a data structure. (UNDEFINED should not be

confused with "don't care," which stands for some value.) UNDEFINED is only used in

a specification, not in an implementation; no operation can return "?" as a value. For

purposes of establishing type-matching rules, however, .?m is assumed to be a value of

every type. _'

5. Specification of "stacks"

Now we are ready to discuss the SPECIAL specification of the module "stacks" (Figure

C-I). This specification consists of three paragraphs: TYPES, PARAMETERS, and

FUNCTIONS. More complex modules would require additional paragraphs, omitted

here for simplicity.

TYPES paragraph

ttere the types referred to in the specification are declared. It is required that all

designator types (e.g., "stacks" for this module) be declared, but the declaration of other

types can be deferred until the first appearance of an item of that type. Note that

comments -- $(This is a comment) -- can appear anywhere in a specification.

PARAMETERS paragraph

All of the parameters are listed as they appear in the interface description of the module.
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FUNCTIONS paragraph

Most of the functionally interesting information in a module specification is embodied in

the FUNCTIONS paragraph. Each of the operations of the module (=push" and =pop"

for the module "stacks") is listed and individually specified. In addition, other functions,

typically V-functions corresponding to data structures, are introduced to assist in the

specification of the operations. It is emphasized that, except for the primitive machine,

the data structures serve only for purposes of specification.

We separately consider V-functions and O- and OV-functions.

6. Specification of V-functions

For purpose of specification, a V-function returns a value and never causes a state

change. A V-function is classified as [primitive or derived] and [visible or hidden]. Thus

a V-function has one of four flavors, identified by the combination of reserved words

that appear in its specification.

The primitive V-functions -- "ptr" and "stack val = for the =stacks" module

-- correspond to the module's data structures. Their specification requires the

association of an initial value with each possible argument value. That is, all primitive

functions are defined to be "total," although many argument values correspond to

physically meaningless conditions. For such conditions, the value of the function is

usually "?" The expression following INITIALLY specifies the initial value. The

primitive v-function =stack val" returns the INTEGER v corresponding to the i-th

location in stacks. We have decided that the initial value v of =stack-val" for any stacks

is to be u?. for all i. The expression

v--?

which is understood to mean

FORALL s; i: stack_val(s, i)--?

captures this decision. Note that, in general, the expression need not determine a unique

initial value for a primitive V-function.

The other primitive V-function, =ptr" returns the value i of the stack pointer for stack

s. The initial value of =ptr" is 0 for all stacks, reflecting the decision that all stacks are

to be initially empty.

A hidden V-function cannot be called from outside the module; i.e., it is not an

operation. The reserved word HIDDEN in the V-function specification declares the

function to be hidden. Clearly, "stack val" should be hidden since only the top

element of the stack is to be accessible. However, some designs for a stack allow the

pointer to be accessible.
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The visible V-functions are operations that return a value, but do not cause a state

change. They are identified by the absence of the word HIDDEN in the specification.

As is the case for all operations, the specification can indicate a list of exception

conditions. Since the "stacks" module has no visible V-functions, we defer discussion of

exception conditions to the next section.

The value of a derived V-function is specified in terms of the values of the primitive V-

functions. In the specification of a derived V-function, an expression that defines the

returned value appears following the reserved word DERIVATION.

Because a V-function can serve multiple roles (say as an operation and a data structure),

the length of a SPECIAL specification can be reduced greatly, compared with an

alternative specification technique in which operations and data structures are separately

specified.

7. Specification of O- and OV-functions

All O- and OV-functions are state-changing operations. An operation can return one of

n exceptions exl, ex2, ..., exn (we use the descriptive term "raise" in referring to

exceptional returns), or can return "normally m. No state change occurs when an

operation invocation raises an exception. A value-returning operation (V- or OV-

function) will return an actual value upon the NORMAL return; an O-function merely

returns. Exception returns are a way of associating particular events with classes of

states and values of the operation's arguments. In the specification of an operation, the

specification of each exception condition consists of a name (typically a mnemonic for the

condition) followed by a boolean.expression that characterizes the condition. The list of

exception conditions follows the reserved word EXCEPTIONS.

The behavior of an operation that has n exception conditions is determined as follows: if

the expression corresponding to exl evaluates to true, then the first exception is raised; if

the expression corresponding to exl evaluates to false and the expression corresponding

to ex2 evaluates to true, then the second exception is raised; ...; finally, if the expressions

corresponding to exl, ..., exn evaluate to false, the operation returns normally.

For the O-function mpush," there is the single exception condition, specified as:

stack overflow: ptr(s) -- max stack size

The expression evaluates to true when the number of elements in the stack is equal to

the maximum size of a stack.

Following the reserved word EFFECTS, the state changes that can occur as associated

with O- and OV-functions, together with the value corresponding to the NORMAL

return of an OV-function, are specified. The specification consists of a collection of
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boolean expressions,each called an effect (in which the order of presentation is

irrelevant). Semantically, the collection of effects should be read as a single expression

that is the conjunction of the expressions corresponding to each of the effects. An effect

can reference the following: arguments to the operation, values of primitive V-functions

before the invocation ('old" values) of the operation, and values that primitive V-

functions will obtain after the invocation ('new" values). In the specification, a single
quote, "" , preceding a primitive V-function indicates the value of the V-function after

the invocation. The collection of effects defines the new value of each primitive V-

function in terms of old values and argument values in the following way: the feasible

new values for the primitive V-functions are those for which each of the effects evaluates

to TRUE. Thus the specifications need not be deterministic, i.e., they need not define a

unique new value for each primitive V-function argument list. However, the
specifications for our simple example are deterministic.

When the new value of a primitive V-function for some argument is not constrained by
the specification, it is assumed that the new value is identical to the old value.

For "push," the effects are:

'stack_ val(s, 'ptr(s)) -- v;

'ptr(s)-- ptr(s)+ 1;

They constrain the new value of "ptr(s)" to be the old value incremented by one, and

the new value of the pointer for s to be the value v pushed onto the stack. Note that,

since the effects do not constrain the values of stack val(s,i) for i _----- 'ptr(s), such
values remain unchanged.

We will not burden the reader with a discussion of the effects for "pop," except for a

few remarks. First, note that the returned value v is specified to be the INTEGER on

the top of the stack in the old state. Second, the location at the top of the stack is the

old state changed to be "?'. It should be clear that this latter state change is apparent

only in the specification. The implementation need not be concerned with this apparent
storing of "?"
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Appendix D. SIFT Specifications in SPECIAL

This appendix presents the detailed SPECIAL specifications of the SIFT executive

systems. A general guide to the specifications is presented in Section B.

I_}I)ULESIFT

$( Vae _)

$( currently the activity kinds are vote, dummy_vote, and execute )

activity_kinds : _;

$( the task kinds are the names of the various tasks. The special

ones axe g!obal exec, reconfig0 and error rel_czt )

task kinds : IN_n(;l_;

$( This is an array of processor numbers used by the 3-way voter,
etc )

proc_array : ARRAYof _;

$( The schedule table type definition )

$( The array of schedules is a configurationschedule for each
possible processor )

sched_arrsy : ARRAYof processorarr_y;

activity_record : RECORD(activity_kinds activity;
task kinds tasknaum;
INTEGEaelem) ;

$( This is a sequence of activities for a given subframe. )

subframearray : ARRAY of activityrecord;

$( This is a sequence of subframe actions for each confib_ration. )

confiK_array : ARRAYof subframe_array;

$( This is a set of configurations for each processor )

processor array : ARRAY of confiK_array;

$( The datafile type definition )

$( A datafile contains an array of task data b_aces for each
process which exists. )

datafile array : ARRAY of taskname_array;

$( An input/output for a process is an array of data )
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elem_array : ARRAY of integer;

$( Each task has an array of data of its own )

taskn_e array : ARRAY of elem_array;

$( The confiEuratic_ table type definition )

$( For each configuration, indicate whether a processor executes
a task )

poll_array : ARRAY of poll_proc_array;

$( Each task either is executed or not {true ¢.'r false} )

poll task array : ARRAY of BOOLF._;

$( For each processor, indicate whether the various tasks are
executed or not )

poll_pr__array : ARRAY of polltask_array;

$( Miscellaneous type definitions )

$( The number of errors seen from each processor. )

errorarray : ARRAY of INTEGER;

$( For each task, the element array which is input to that task )

inputarray : ARRAY of elem_array;

$( A set of integer, for reasoning about properties of things )

set of int : SETDF INTEGER;

$( An array of integer, one for each task )

task array : ARRAY of INTEGER;

$( An array of boolean )

bool._array : ARRAY of _OLFAN;

$( The PARAMETERS )

P_ _ frame size. max_processors, my_processor.
max_activities, max_elems, max tasks, bottom val,
err_threshold, vote. dum_jLvote , execute, recenfig,
global_exec, error report, null_task;

$( The sched table is a sequence of schedules for each configuration.
It is of the form:

sched_table [proc mini [confi_ur_tion] [subframe] [activity num]

and _ves a record of activities to do. Given a processor
number, and a confi6_iration number, and a mlbfra_ number,
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then there are a sequence of activities to do, each one
described by its ACTIVITY field. The activities are currently
VOTE, DtP_1ffVDTE, sad EXECUTE.For votss, the _skzume lleld is
the task to vote on and the element number is the element to
vote on. For dum_._votes, the entire element sequence of the
taskname is set to bottcL For executes, the taakname is invoked. )

scbed_array sched_table;

$( The poll tells whether a processor r_u a task in a given
confi[uration. It is referenced as:

poll [configur4ticn] [processor] [taskname] )

poll_array poll;

$( The inputs tell which tasks have produced input for a
p_ticular task. It is indexed by the task to run 2nd
the number of the task which is input (from 1 to n_. )

tasknamearray inputs;

$( This indicates which tasks are interactive consistency tasks. )

beol_army i_c;

$( This returns the number of elements output by each task )

task_array result_size;

$ ( The error report tasks are a group of tasks {one for each
processor} which do the error reporting. They are indicated
here. )

proc_arr_y error report tasks;

$( The error i c tasks are the interactive consistency tasks
which broadcast around the error reports. There are three
of these tasks with the specified task numbers. )

pr__arrayerrorictasks;

$( The DEFINITIONS)

DEFINITIONS

BOOLEAN is in majority (INTEGER c, t, e. ul) IS

$( given • configuration c, a Uskna_ t, and in element number e,
return true if val is in the majority of the outputs of _11 of
the processors which produced output according to POLL. T_ there
is no majority, then v_l must, be the default _lue. )

IF EXISTS INTF/:_ maj_v_l :
CARDINALITY ({ INTF/IER q I q >= 1 AND q <: max_.proce.ssors

/_m poll [c] [.re_ to vitrO [q]] [tJ
_aD mLv_ = d_--teZY1eO[q]It][e]})• 2

> CARD_MLITY ({ INTF/g_ p [ p >: 1 AND p <: m.z_processors
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mmpon [c][p][t]})E_D_EnSTS
FORALL INTECER mj :

CARDINALITY ({ INTEGER q [ q >= 1 AND q <= max_processors
AND poll[c][realto vir%O [q]][t]
_Jm maj = datafileO [q] It] [e]}) * 2

> CARDINALIrf ({ INTFZ_ p [ p >= 1 AND p <= max_processors
ANDpoll[c] [p] [t])]

:> wl : mj __FORALL
val = bottom_val END_IF;

$( 'The P'AI_q'ER INVARIANTS )

P_ INVARIANTS

$( Constr_inte on the simple parameters. Various ccnstante_have
appropriate v_lues. )

fraam_size > O; m_x__processore > O;
my_processor >= 1 _J_Dmy_processor <= max_processors;
maa_activities> O; ma_elcms • O; max_tasks > O;
vote • 0 AND dummx_vote > 0 AND execute > O;

vote -= duma_vote AND vote -= execute M_) dumm___vote"= execute;
FORALL INTEGER i : FORALL I_W/]ER j :

reconfig -= global_exec AND
reconfig "= null task AND

null task "= global_exec AND
errorreport_tasks [i]
error_report tasks [i]

error_report_tasks [i]
error_report_tasks [i]
error i c tasks [i] "=
error i c tasks[i] "=
error i c tasks[i] -=

"= reco_ig AND
-= global exec AND
-= null t_sk AND

-= error i c tasks [j] A_)
reconfig
null task AND

globalexec ENDF[]KALLENDFOPJJ.L;

$( Constraints on the schedule table and associated data structures )

FORALL INTEGERp : FORALL INTEGERc : FORALLINTEGER sf :
F_RALL INTEGER j 1 : FORAIL INTEG_ j2 : FORALLINTEGER i :

$( any execute which needs the results of a vote or
dungy vote must follow the vote )

sched_table [p] [c] [el] [j 1]. activity = execute
AND ( sched_table[p] [c] [sf] [j2] .activity = vote

OR sched t_ble [p] [c] [sf] [j 2] .activity = W_vote)
inputs [sched_table [p] [c] [sf] [j 1]. taskna_] [i]

= sched_table[p] [c] [sf] [j2] .tasknane
=> jl > j2

___L E___LL __mm_L _D__LL mm__Z_L _D_mZ_L;

H]RALL INTEGER p : FORALL _ c : FORALLINTEGER sf :
FORALLII_X]ER jl : FORALLINTEGER j2 :

$( there does not exist a vote and a duma_vote.on the
same task during a subfra_. )
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NOT ( scbed table[p] [e] [sf] [jl] .activity = vote
em ,ch_le [p] [e] [s_] [j2].act±nt_ __vote
ANDscbed_table [p] [c] [sf] [j 1]. t_.n_ =

sched_table [p] [c] [sf] [j2]. teskna_)
ENDFORALLEND FORALLDD FORALL_D FORALLE__FORkLL;

FORALL INTEGER p : FORALL INTEGER c : FORAI_ INTEGER sf :
FORALL _ jI : FORAI.LINTEGER j2 :

$( there does not exist a vote on tho results of an execute
in the same subfra_ )

NOT ( sched_table[p][c][sf][j1].activity = execute

AND sched_t_ble[p][c][sf][j2].activity = vote
_D sched table [p] [c] [sf] [j 1]. taskna_ =

s-cb__table [p] [c] _f] [j2] .tea_same)
E_ _ZALL _D _LL _D FOZ_L E_ _ZALL mm_FOZ_L;

FORALLINTEGERp : FORALLINTF/;_ c : FORALLINTEGER sf :
FORALL XXIEfiER jl : FORALL_ j2 :

$( Any reconfixuratic_ done mast be at the end of a subframe )

sched_table [p] [c] [sf] [j 1]. activity = execute
A_© sched_table[p] [c] [sf] [jl] .tmskname = reconfig
AND ( sched__table [p] [c] [sf] [j 2]. activity = execute

OR sched t_ble[p] [c] [sf] [j2] .activity = vote)
=> ji • j2 _D_V--O_LL_D__O_LL _D__ _D__LL ___ZaZ;

FOPALL INTEGER p : FOPALLINTEG_ c : FOP&LLINTEGH_sf :

$( no vote and errorreport allond in the sam subfra_. )

EXISTS INTEGER j :
sched_table[p][e][sf][j].activity = vote END_EXISTS

=> NOT EXISTS INTEGLR i :

sched_table [p] [c] [sf] [i].activity = execute
ANDsched_table [p] [c] [sf] [i].taslmame

= error_report_tasks [p] END_EXISTS

__FO_ALL __FO_LL _V_FORALL;

FORALL INTEGER p : FORALL INTEGER c : FORALL INTEC_ mf :
FORALL II___ER i : FORALLINTEGER j :

$( There do not exist two votes on the same element of
the sam task in the same subfra_ )

sched_table [p] [c] [sf] [i]. activity = vote

AND sched t_ble[p] [c] [sf] [j] .activity : vote
i "- j

=> sched_table [p] [c] [sf] [i].tasknmm
-= sched_table [p] [c] [s_] [j] .t askim

OR sched__table[p][e][sf][i].elem
-= sched table [p] [c] [sf] [j ]. elem

__FO_LL m___e_LL __FO_ALL _V_FORALL___OR_LL;

FORALLErrF_ER p : FORAIL II_.__ER c : FOPALLDITHER sf :
FORALLLNTEGER i : FORALLINTEGER j :
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$( There do not exist two duma_votes ca the same element of
the sa_e task in the same subframe )

,chedt_ble[p][c][sf][i]._ivity = d_m_._vote
AND sched table[p] [c] [sf] [j] .activity = dum_. vote
ANDi "=j

=> sched_table [p][c][sf][i].taskna_m

"= eched_table [p] [c] [sf] [j] .tas]mame
E__FOP_LLENDFOP_U_LE___F0_LL E__FOP._LLE_._LL;

FORALL INTEGER p : FORALL INTEGER c : FORALL_ sf :

FORALLINTEGER i : FORALLINTEGER j :

$( There do not exist two executes c_
the same task in the same subframe )

sched_table[p][c][sf][i].activity = execute
AND sched_table[p] [c][sf][j] .activity : execute
A_O i -= j

=> sched table[p][c][sf][i].taskname

-= sched_t_ble [p][c][sf][j].taslmanm
E_D_FOP_LEM)_FOP._LE__FOP_ E__FORALLF_mf0RALL;

F{3R.4LLINTEGER p : FOKALLINTEGER c : FORALL_ sf :
FOKALLINTEGER j :

$( all activitiesare either vote. dummy vote, or execute. )

sched_table[p][c][sf][j].activity = vote
OR sched_table[p][c][sf][j].activity = dum_._yote
OR sched__table [p] [c] [sf] [j ]. activity = execute
OR sched__table[p][c][sf][j].activity = 0

E__V0_LL _O_VOPJ_LEh__VO_L _O_0S_d.L;

FOPALL INTEGERp : FOKALL INTEGER c : FORALL INTF_ER sf
FORALL INTEGE_ j : FOKALL I_ i :

$( zero fill in sched table )

sched_table[p][c][sf][j].activity= O AND i • j
=> sched_table[p][c][sf][i].activity = O

_OJORALL mm VOmU_LEra)VOZALLmm VOZ_L EHO_VOS_L;

FORALL INTEGER c : FORALL INTEGERti :

$( The number of processors running a particular task
is 1 for interactive consistency tasks or 3
otherwise )

CA_DIRALITY({ _ p I p >= 1 ANDp <= [p__proc]
max essors

AND poll [c] [ti] })
= IF i_c[ti] _ I ELSE 3 ENDIF

E__VO_LL E__FOS_LL;

$( The inputs to the globs/ executive are itself and the
error interactiveconsistency tasks. )
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inputs [globxl_exec] [1] = global_exec
AND FORALL INTEGER i : (i >= 1 AND i <= _ax :_processors

:> inputa_lob_ exec] [i+l] : error i c tasks[i])
AND (i < 1 OR i > max_processors

=> inputs_lobalexec] [i] : null task)
ESD_FORALL;

$( these are the constraints on the output of various tasks )

FORALL input_array imp : FDP,AIZ. _ i :

taskresults (error i c tasks[i], inp) = inp[1]
w _.VOIUCL

$( returns 1 {notlorking_ if it ns previously not working
or if a majority of those morki_ cc_sider it bad. )

FORALL input_array inp : FOPALL INTHIHt p :
IF inp[1] [p] = 1 $( = input[global_exec] [p] )

OR C/_INALITY({]_J_ER ql I inp[1] [ql] = 0
p -= ql AND i_p[ql+l] [p] = 1}) * 2

$( = input[ell-or i c task_[ql]] )

> CARD]]L_LITY ({INTB3_ q2 I inp[1] [q2] : 0 AND p ": q2})
THEN task results (global__exec, inp)[p] = 1
ELSE task_results (global__exec, in]>)[p] = 0 E_4D IF

E VOP..a.U.E JOI kLL;

FI_CTIONS

$( The State Functions )

$( The subframe count. Used to index into various tables )

VFUN sub£_ () -> INTEGER s;

$( The current configuration {ie, the number of processors
currently assumed to be workin@. )

VFUN configO -> IFrEG_ c;

$( This is the input values for a task. It is referenced as:
_put [taskname] [element] )

VF_ input() -> input_array value;

$( The datafile is the broadcast area. It is referenced as:

datafile [processor] [taskname] [element] )

VFUN datafileO -> datafile__array value;

$( The errors acc_alated for each processor, indexed 1_7 processor )

VF_ errors() -> error_array v;

$( Given a real processor number, this returns the processor number
used in the various tables for this confiKuratic_. )

VFUN real to virtO -> proc array v;
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$(

$( Given a processor number in the tables, this maps to the current
real processor which is associated with it )

VFUN virt to real() -> proc_arr_y v;

The Operations )

0R_ dispatcher ();

$( The dispatcher is invoked each subframe. It bumps the subframe
number and does each of the activities for that subfrsme. )

ASSERTIONS

subframeO < frame_size and subfraneO >= O;
FORALL INTEGER c : FORALL INTEGER ti :

CARDINALITY({ INTEGER p I p >= 1 AND p <= ma_processors

AND poll[c] [real to virtO [p]] [ti]})
= IF ic [ti] THEN 1 ELSE 3 END IF

Z D!O E D_FORA ;

EFFECTS

$( changes to subframe )

'subframeO = (subframe * I) MOD frame_size;

$( poll set still has 1 or 3 )

FORALL INTEGER c : FORALL INTEGER ti :

CARDINALITY({ INTEGER p ] p >= I AND p <= ma_processors

AND poll[c] [real to virtO [p]] [ti]})
= IF i c[ti] THEN 1 ELSE3 END IF

$( chan es to INPUT:
For all tasks ti and for all data elements of the task.

if this element of this task was voted on then the input now
has the mmjority value, else if it was dummy voted it has

bottom as v_lue, else it hasn't changed. )

$( Frame axiom: if no vote or dummy vote. nothing clmnged )

FORALL INTEGER ti : FORALL INTEGER ei :

NOT EXISTS INTEGER j : j >= I AND j <= max activities

AND ti = sched_table [real to virtO _my_processor]] [config()]
[subfr_me O ] [j ]. taskna_

AND ( ( sched_table[real to vitrO [my_processor]]

[configO] [m_bframe()] [j]. activity
= vote

A_) ei = sched_table[real to virtO _my_processor]]
[canZig()] [j]. el )

OR sched table[real to virtO [my_processor]] [configO]
[subfranm () ] [j]. activity

= dummy_vote) END EXISTS
--> 'input() [ti] [el] - input() [ti] [_i]
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$( vote activity)

FOBALL INTEGER ti : FONALL INTF_ ei :

EXISTS INTE_ j : j >= 1 _) j <= max_activities
AND sched_table [real to vitrO [my_processor]] [configO]

5_b_r_m()][j]._tivity= vote
AND ti = sched_table[real to virtO Ony_processor]] [configO]

[sub_r_e () ] [j]. tasknm_
AND ei = sched__table[real to vitrO [m/processor]] [configO]

C_r_O] Cj].ele.E_ EXlS_
=> is in majority (configO, ti, ei, 'input(7[ti] [ei])

E__..FOPm,LESDVOR,_.,;

$( mr_ vote =tinty )

F0_ALL INTEGER ti : FORALL INTEGER ei :

EXISTS INTEGER j : j >= 1 AND j <= ma activities
AND sched table[real to virt()_my_processor]]

[con_igO] [subframe()] [j]. activity

= dummy_vote
AND ti = sched table[real to vitrO _ny_processor]]

[con_igO] [,ub_rme()] [j] .tasknz_
END_EXISTS AND ei >= 1 AND ei <= result__size[ti]

=> 'input() [ti] [ei] = bottmm_wl

$( Changes to ERRORS:
For all processors p, for every non interactive consistency
vote that p was involved in for which p was not in the m_jority,
the error count for p goes up by one. )

FORALL INTEGER p :
' errors 0 [p] = errors 0 [p]

+ CARDINALITT ({INTEGER j I j >= 1 AND j <= max_activities
AND sched__table[real to virbO _nT_processor]] [configO]

[subfr3me 0 ] [)].activity = vote

AND NOT i c[sched table[real to vitrO _my..Drocessor]]
[co--nfigO ] _ubframe 0 ]-_j ]--taskn_e]

ANDport [con_ig()] [real_to_virt 0 [p] ]
[sched_table [real to virt 0 _ny_processor] ] [config 0 ]

[subframe 0 ] [j ]. tulamm]

AND NOT is in majority
(config(),
sched_table [real to vii'tO [my_processor] ] [config()]

Csub_ram0 ] [j ]. taskn,_,
sched_table [real to virt 0 _y_processor] ] [configO ]

[sub_rme () ] [j]. el,=,
d_tafileO [p]

[sched_table [real to vir%00ny_processor]
[ca_Yg(_][_zram()]
[j] ._s_]

[sched_table[re:d to vir%0 [my_grocessor]]
[co_Yg(Y][su_r_m 0 ][_].elem])})

_D_FO_;

FORALL INTEGER j : FORALL INTEGER p :
j >= 1 AND j <= max activities
AI_) sched__table [re__to_virtO Imp_processor] ] [confi_O ]
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[subfra_0 ] [j ]. activity = execu_
AND sched_table[real to vitrO _my_processor]]

[c_igO] Csub_r_ 0 ] C]]. tukmm.
= errorr eport_tasks _ny_processor]

=> 'errors()Cp] = 0 E_.FOItiLL i__FOIL_L;

$( Changes to DATAFILE:
For each task that is executed, the datafile contains the
output for that task. )

$( Frame axiom: if no execute is done _ a task. then
its datafile area stays the same. )

FOP£LL INTEG_ p : FORALL INTEG_ ti : FOP_IL _ ei :
NOT ( p = my_processor

AND EXISTS INTEGER j : j >= 1 AND j <= max activities AND
sched_table [real to virt O [rrLprocessor] ] [con/igO ]

Csubframe()] Cj] .activity = execute

AND sched_table[real to virtO _ny_processor]] [config()]
Csub_r_e()][]].taskns_= ti

END EXISTS)
=> '_t_ileO [p][ti][ei]= _tUileO [p][ti][ei]

EmLFOP,ZJ.J.,m_'DFOPaUJ.,__V0eALL;

$( Execute activity )

FOP_ INTEGER ti : FOP_ INTEGER ei : FOP_LL INPUT ARRAY i_ :
EXISTS INTEGER j : j >= 1 AND j <: m_. _tiTities AND

sched_table [real to virt O Ony_proce--ssor]] [configO ]

[subframe()] Cj] .activity = execute
AND sched_table [real to virtO Cmy_processor]] [config()]

[subframe 0 ] C]].taskname --ti

AND tl -= reconfig

AND ti "= error_report_tasksEmy_processor]
_,_ EXISTS

_J_D FONALL INTF_ taski : FORALL INTEGER j : FORALL INTEGER elemi:
j >= I D2_Dj <= result_size [taski]

AND inputs[ti] [j] = taski AND t_ski -= null task

=> inpCj] [elemi] = 'input() Ctaski] [elemi] --
END FORALL END FOPJd, L END FOPALL

=> 'dataf--ileO __p_ocessor] Ct_] [ei] = task_results (ti, inp) [ei]
_n)_FOP_XL__FOPaU.J.E_O_FOPaU.L;

FOP_%LL INTEGER ei : FOIMLL INTEGER j
j >= 1 AND j <= max activities

AND sched_table [real to virt 0 _my_processor] ] CconfigO ]

CsubframeO] Cj].activity = execute

AND sched_table [real to vitrO [my_processor]]
[con_ig O ] [su_r_m_ O] [j ]. tas_m

, = error_report tasks [my_processor]
=> datsJileO _my_processor] [error_report tasks _my_processor]] [el]

: IF errors()Cei] > err threshoTd THEN I ELSE 0 I_D IF

E_m_FOm_LL_D_FOm_L;

$C Changes to CONFIG, REAL TO VIRT, and VIRT TO REAL:

These axe only changed by reconfig. Co.fig is set to the number of

processors which are currently _orking, as reported by the global exec
task. Re_l to virt is set so that the nth processor is mapped to--
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the ruth working processor. Virt to real is set so that the nth
working processor is mapped to the ruth processor. )

$( Frame axiom: if there is no reconfiguration, then the

reccnfiguration data stays the same. )

HST EXISTS _ j : j >= I AND j <= max activities

AND sched_table [real to virt O _ny_processor] ] [configO ]

[subframe 0 ] [j ]. activity = execute
AND sched_table Oreal to virt 00ny_processor] ] [con_i S 0 ]

[subframeO] [j] ._ = reco_ig
END EXISTS

=> 'c--onfigO = configO AND 'real_to_vitrO = real_to vitrO AND
'rift to real() = virt to realO;

$( reccn_igur_tic_ activity )

EXISTS INTEGER j : j >= I AND j <= max activities
AND sched table [real to virt 0 _ny_rocessor] ] [configO ]

[subfra_()] [j]. activity - execute

AND sched_ table [real tovirtO _ny_processor]] [co_figO]
[subframeO] [j] .taskname = reccnfig

END EXISTS
=> FORALL INTEGER • :

'cenflgO - CARDINALITY ({INTEGER pl [
inputO [global_exec] [pl] = 0})

AND 'real to_vitrO [x] = CARDINALITY ({IN'rECER p2 I
p2 <= • AND inlmtO _lobal_exec] [p23 = 0})

AND '_ to real 0 [x]

=--x _ CARDINALITY ({INTH;ER p3 [
p3 <= • AND inlmtO [global_exec] [p33 = 1})

OFUN vote___ctivity (INTEGER c, t. e);
ASSt_TIONS

FORALL INTEGER c : FORALL _ ti :
CARDINALITY({ INTEGER p [ p >= 1 AND p <= max_processors

AND poll [c] [reffil_to_virtO [p]] [ti]})

= IF i c [ti] THEN 1 ELSE 3 E_D_IF

 D_ ZALL E D_ Z L;

EFFECTS
is in majority (c, t, e, 'input() [t] [e]);
FORALL INTEGER ti : FORALL INTEGER ei :

ti "= t 0R ei "= e => 'input()[ti] [ei] = inputO [ti] [el]

_ FOHALL END_FORALL;
FORALL INTEGER q :

IF poll[c] Ereal_to_vir_O [q]] [t] AND mT i c[t] THEN

IF is in,majority (c, t, e, datafileO [q_[t] [e])
7errors O [q] - errors O [q]

ELSE 'errors 0 [q] = errors 0 [q] ÷ 1 E_D_IF
EL_OE'errors() [q] = errors() [q] END_IF E2D FORALL;

UVFUN vote3 (INTEGER t, e; proc_array p) -> INTEGER result;

ASSERTIOI_J
p[1] "= p[2] AND p[1] "= p[3] AND p[2] "ffi p[3]

AND p[1] >= 1 AI_) p[1] <= mI_processors
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ANDp [2] >= 1 ANDp[2] <= max_processors
ANDp [3] >= 1 ANDp [3] <= mx_pz_essors;

EFFECTS
IF EXISTS _ ._l_wl :

CARDINALITY ({INTEGER ql I ql >= 1 ANDql <= m___processors
ANDd_tatileO[ql]It][e]: mj_v_

(ql = p[1] OR ql = p[2] OR
ql = p[3])}) > 1 END_EXISTS

TI_ FOIIALLINTEGERmaj :
CARDINALITY({INTEGERql [ ql >= I AND ql <= m__.processors

d_ileO [qt]It][e]= mj
AND (ql = p[1] OR ql = p[2] OR

ql =p[3])}) • 1
=> result, = maj

FORALL INTEGERj :
IF j -= p[1] AND j "= p[2] AND j "= p[3]
TH_ 'errors 0 [j ] = errors 0 [j ]
ELSE IF datafileO [j] [t] [e] = mj

TEEN ' errors 0 [j ] = errors 0 [j ]
'errorsO [j] = errors()[j] + 1 END IF _ IF

END FO}MLL -- --
END FO_LL

ELSE result = bottom val

AND FORALLINTEGER j :
j : p[1] OR j : p[2] OR j : p[3]

THEN 'errors 0 [j ] = errors0 [j] * 1
ELSE 'errors() [j] : errors() [j] END_IF

END_FOZALLEND__;

OFUNd,mmX._vote_activity(INTEGERc, t);
EFFECTS

FORALL INTEGER ti : FORALL INTEGER ei :

'inputO [ti][el]--
IF ti = t AND ei >= 1 ANDei <= result size[t]
_IEN bottom v_l ELSE inputO [ti][ei]END IF

EHD_FORALLE__FOZALL;

OFUNgezect'ask 0 ;
EFFECTS

FORALL INTEGER t : FORALL INTEGER e : FORALL INTF2J_p :
IF p = w_processor AND t = global__execTHEN

IF inp_lobal_exec] [p] = I

OR CARDIHALITY ({INTEGERql [ iup[global__exec][ql]= 0
AND p ": ql AND inp[error i c tasks[q1]] [p] : 1}) *

2 > CARDINALITY({INTEGERq2 1 inp [global_exec] [q2] = 0
AND p -= q2})

THEN 'datafileO [p] [t] [e] : 1
ELSE 'd_tafileO [p][t][e] : 0 END IF

ELSE 'd_t_ileO [p] [t] [e] = datafile_)[p] [t] [e] END IF
EnD_FORALLESD_FORALLE__FORALL;

OFUN errtask 0 ;
EFFF_rP3

FORALLINTEGERp : FOPALL I_gEGH1 t : FORALLINTEG_ • :
'data_ileO [p][t][el :

IF t = error_reportAND p = my_processor THEN
IF errors()[e]> err threshold THEN I ELSE 0 END IF

ELSE datafileO [p] [t] [e--] END_IF EHD_FORALLEND_FOP_LL
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(p >: 1 _ p <: max.processors :> 'errors()[p] : O) E_ID_FOr_;

OFUN recftask ();
EFFECTS

'configO = CARDINALITY ({INTEGER pl I input()[glob__ezec][pl]= 0});
FORALL _gEC_ z2 :

'real to vireO [z2] = CARDINALITY({_ p2 I
p2 <= z2 AND input()[globalexec] [p2]= 0})

END FORALL;
FO.RALLINTEGER .3 :

'virt to realO [z3] = z3 + CARDINALITY({INTF_ p3 I
p3 <= z3 AND input()[glot_lezec] [p3]= 1})

Et__rORALL;

OVFUN do err ic (INTEGERti) -> BOOLEAN taskdane;
EFFECTS

IF EXISTS INTEGER i : error i c tasks[i]'= ti END EXISTS

THEN FORALL INTEGER p : FORALL INTEGER taski : FORALL _ ei :
'datafileO [p] [taski] [el] =

IFp = roT_processor AND ti = taski
THENinput()[inputs [ti] [1]] [el]
ELSE dat_ileO [p] [taski] [ei] END IF

E_/DFORALL_D FORALLEND FORALL
ANDtask done = TRUE

ELSE task done = FALSE

and 'data_ileO = d_ta_ileO END IF;

0FUN general_task (INTEGERti);
EFFECTS
FORALL INTEGER p : FORALLINTEGER t_ski : FORALLINTFLIERei :

IF p = my_processor ANDtaski = ti THEN
FORALL input_arrayinp :

FORALL INTEGER input_task : FORALL _ j :
FORALL INTEGER elemi :

j >: I AND j <: result_size[input_task]
AND inputs[ti][j] = input '_ask
AND input_task "= null t_k

=> inp [j] [elemi] = ' input(--) [input task] [elemi]
ENDFORALLEZ_DFORALLENDFORALL

:> 'd_t--a/ileO[p]-_ti][ei] = _k_results (ti. inp)[el]
END FORALL

ELSE 'cl_t_fileO [p][taski][ei] = d_t_fileO [p] [tmski][ei] END IF
END FORALLEr_D FORALLE_._FOXALL;

'_ut(-)= _ut(T;

END MODULE
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Appendix E. The 1553A Aircraft I/O
Controller

1. Introduction

This appendix describes the design of the module that controls aircraft input-output,

according to MIL STD 1553A for each processor.

2. General Characteristics

The 1553A controller is a 32-bit word-sized, microcoded processor. It has address

computation capability, microcoded test routines, ability to program branch special-

purpose registers, and ability to operate on a prioritized interrupt or polling basis. The

controller shares memory with one BDX-930 processor through the data file of the

processor. The interface to the data file provides for 16-bit parallel words. The

interface to the 1553A bus is serial by bit.

The 1553A controller is composed of an analog section and a digital section. The analog

section is a waveform and impedance converter. It converts the pulsed digital data

received from the diKital section to a 1 megabit serial 1553A bus-compatible signal for

transmission over the 1553A bus. In turn, it converts the received 1553A bus signals to

pulsed digital data that can be processed by the digital section. The digital section

responds to commands from the BDX-930 processor to transmit, receive, or idle. In

addition, it encodes and decodes bus data as required by mode logic (Figure E-l).

3. Detailed Design

The 1553A bus employs three modes of information transfer: (1) bus-controller to

remote-terminal (RT) transfer, (2) RT to controller transfer, and (3) RT to RT transfer

(FiKure E-2).

The sequence of events for controller-to-terminal transfer is as follows:

-Reset encoder/decoder

-Check bus activity

-Encode contents of command register

-Access data file and load into data register

-Encode contents of data register

-Increment address counter

-Decrement data word counter

-Verify that all data words have been transmitted

-Verify that remote terminal responds with a valid status word within a

specified time frame or flag an error.
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Terminal-to-controller transfers are made as follows:

-Reset encoder/decoder

-Check bus activity

-Encode contents of command register

-Verify that a valid status word is received from RT within a specified time

frame (or flag an error), and load the decoded word into the T register

-Verify that valid data word(s) immediately follows status word or flag an

error, and load the decoded word into the data register

-Load contents of data register into data file
-Increment address counter

-Decrement word counter

-Verify that all data words have been transmitted.

The sequence of events for terminal-to-terminal transfer is:

-Reset encoder/decoder

-Check bus activity

-Encode contents of command register

-Encode contents of T register

-Verify that a valid status word is received from RT within a specified time

frame or flag an error, and load the decoded word into the T register

-Verify that valid data word(s) immediately follows status word or flag an

error, and load the decoded word into the data register
-Increment address counter

-Decrement word counter

-Verify that all data words have been transmitted

-Verify that RT responds with a valid status word within a specified time

frame or flag an error, and load the decoded word into the T register,

The message formats for the information transfers discussed in the preceding paragraphs

are shown in Figure E-3.

Errors that are detected during information transfers are indicated in the eight-bit-

controller status register (Figure E-l). The contents of this register indicate the

following:

-A logic '1' in bit 0 indicates that the avionics multiplex bus is active. A logic
'0' means the bus is inactive.

-A logic '1' in bit 1 indicates that the remote terminal has responded too

quickly with its status response (error 1). A logic '0' indicates no failure.

-A logic '1' in bit 2 indicates that the remote terminal has not responded with

its status word within the allotted time (error 2). A logic '0' indicates no
failure.

-A logic '1' in bit 3 indicates that the information being received into the

controller from the RT is of the wrong type, i.e., data when it should be

status or vice versa (error 3). A logic '0' indicates that it is of the correct
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-A

-A

type.

logic '1' in bit 4 indicates that the interword gap was too long (error 4). A

logic '0' represents a no-failure indication.

logic '1' in bit 5 indicates that the word received from the remote terminal

was invalid, with parity incorrect, timing off, or sync incorrect (error 5). A

logic '0' represents no failure.

-Bit 6 is not presently being used.

-A logic '1' in bit 7 indicates that the 1553 controller has completed the

requested transfer (controller to RT, RT to controller, or RT to RT).

logic '0' indicates transfer not complete.

A

The command, status, and data words referred to in the preceding paragraphs have the

word formats shown in Figure E-4. The word size is 16 bits plus the synch waveform

and the parity bit.

The command word comprises a synch waveform, RT address, transmit/receive bit,

subaddress/mode, data word count, and a parity bit (Figure E-4). The five bits

following the synch specify the RT address. A maximum of 32 RTs can be attached to

each bus. The transmit/receive bit indicates the action required of the RT. A logic zero

indicates that the RT is to receive; a logic one indicates that it is to transmit. The

subaddress/mode field can be used for either a RT subaddress or mode control. It is not

presently used. The data word count field specifies the quantity of data words to be sent

out or received by the RT. A maximum of 32 data words may be transmitted or

received in any one message block. The last bit in the command word is used for parity

over the sixteen preceding bits. Odd parity is used.

The data word comprises a sync waveform, data bits, and a parity bit (Figure E-4). The

five bits following the sync specify the address of the terminal that is transmitting the

status word. A logic one in the message-error field indicates that the preceding message

failed to pass the RT's validity tests. The error condition includes parity errors. A logic

zero indicates the absence of a message error. The nine bits following the message-error

bit can be used to indicate the RT's status. Presently, they have not been defined. A

logic one setting of the terminal flag bit indicates the need for the bus controller to

examine the built-in test data available from the terminal. Utilization of the parity bit is
the same as for the command word.
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Appendix F. Task Programming

1. Introduction

SIFT programs must be specially prepared to provide for task scheduling and voting.

Presently this preparation must be done manually. This Appendix gives instructions for

this preparation. There are three major steps: task dependency analysis, programming,

and table creation.

2. Task Dependency Analysis

Analysis of dependency relations among tasks is conducted in the following steps:

1. Divide the application into tasks. The tasks should be iterative in nature,

and each one should be capable of completion in a short period of time (well

• under 3 milliseconds).

, Determine what data will have to be saved from one iteration to the next.

This includes state information that the task will need the next time it

executes, as well as information that needs to be passed from one task to

another.

. Having made a list of all data that need to be saved, determine the

dependency of tasks. For example, if Task A broadcasts a value that Task B

needs to execute properly, then it is clear that all processors must have

completed Task A before any processor may run Task B. Assume we have

Tasks A, B, and C. Task A broadcasts X, Task B needs X and Y to compute

Z, which it broadcasts, and Task C needs X to compute Y, which it

broadcasts. Then Task A must run first, Task C must run second, and Task

B must run third.

3. Application Program Scheduling

A schedule for application programs is constructed as follows:

1. Assume that the complete set of data to be saved or transmitted is X, Y, and

Z. Assign small integers to each, preferably sequentially. No value should be

lower than 4 (values less than this are used by the operating system) and no

value should be higher than 119. Using SIFTDEC.REQ as an example (the

constants xreset through qz) assume X is assigned 4, Y is assigned 5, and Z is

assigned 6. Call these numbers the variable idents.

2. Insert broadcasts for each piece of data needing it into the code for the

computing tasks. If the constants have been properly assigned, this should be
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almost transparent to the user. To broadcast the value 32 for X, insert the
procedurecall

STOBROADCAST(X, 32)

3. The value of any variable that has been broadcast, may be obtained by a

task needing it by referring to POSTVOTE[(variable)]. For instance,

POSTVOTE[X] would contain the value of X if it has been broadcast. As
the name implies this is the value after a vote.

4. Table Creation

Schedule tables are created as follows.

1. The module SIFTTA.BDX (implemented in assembly language) contains the

precomputed tables for SIFT. The first entry should be a set of EQUates for

the symbolic variables that associate their idents with their names. For
instance:

X EQU 4

Y EQU 5

Z EQ,U 6

2. The next entry is a set of EQUates to assign task names to task numbers.

Numbers 0 through 5 are reserved for the operating system, and should be

defined as they are in SIFTTA.BDX. Continuing with our example:

A E_U 6

B EQU 7

C EQU 8

3. The TASK macro has been defined to allow declaration of a state space for

each of the tasks. It puts two parameters: the task name (A, B, C) and an

offset into the buffer information table (to be described shortly). For
example:

T5 TASK A.AOFF

T7 TASK B,BOFF

T8 TASK C.COFF

4. The buffer information table contains information, used during

reconfiguration, that associates tasks and computed values. It is a list of

buffer numbers (the variable idents already declared) separated by 0 entries,

one such list for each task that computes values. The symbol NLOFF may

be used in declaring the task table entry for a task that does not compute

any values. The EVENT macro is used in building this and other tables. It

takes as its single parameter, the variable ident or task number assigned.
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Following is a complete

system part) for our example:

STLOC EQU *

EROFF EQU *-STLOC

EVENT ERRE.-_

NLOFF EQU *-STLOC

EVENT 0

• gexec

GEOFF EQU *-STLOC

EVENT GEREC

EVENT GEMEM

EVENT 0

AOFF EQU *-STLOC '

EVENT X

EVENT 0

BOFF EO.U *-STLOC

EVENT Z

EVENT 0

COFF EQU *-STLOC

EVENT Y

EVENT 0

buffer information table (including the operating

5. The next entry is the schedule table. It determines exactly which tasks run

during which subframe on which processors. There may be many events

scheduled per subframe, or there may be no events scheduled per subframe.

In addition to the task schedule there is a schedule that determines when

data are to be voted upon. The key problem in building these schedules is to

make sure that all dependencies are met. If Task A must be run before X

can be voted, it is imperative that the vote schedule so indicate. In addition

to EVENT, three other macros exist to aid in creation of these schedules:

SFEND is used to indicate the end of a subframe in a schedule: SCHED is

used to initialize a particular schedule; it takes four parameters, (a) the

number, N, of active processors this schedule uses, (b) which of the N

processors this one is, (c) the symbol that refers to the start of this schedule,

and (d) the symbol that refers to the end of this schedule (this caters to

limitations of the BDX assembler; the special processor number 99 is reseryed

to indicate the VOTE schedule), and (3) SEND is used to terminate a

schedule, even prior to using up all of the allowed subframes. For our

example the following would be a legal schedule for the first processor in a

one-processor system. Since there are so few tasks, for a larger system all

tasks would run on all processors, and each o_" the schedules would be

identical (for a more complex example, see the schedule in SIFTTA.BDX).

$11 SCHED I, 1,$11,Ell

EVENT A Subframs 0
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Ell

SFEND

EVENT C Subframe 1

SFEND

EVENT B Subframe 2

SFEND

EVENT ERT Subframe 3

SFEND

EVENT GET Subframe 4

SFFRD

EVENT RET Subframe 5

SFEND

EVENT CLT Subframe 6

SFEND

SEND

The error task

The global executive

The reconfiguration task

The clock task

S199 SCHED 1,99,S199.E199

SFEND Subframe 0

EVENT X Subframe 1

SFEND

EVENT Z Subframe 2

SFEND

EVENT Y Subframe 3

SFEND

EVENT ERRER Subframe 4

SFEND

EVENT

E"VF_T

SFEND

EVENT

E199 SEND

GEREC Subframe 5

GEMEM Subframe 5

(No voting)

(X is available after A runs)

(Z is available after B runs)

(Y is available after C runs)

(ERRER is available after

Error task)

(Available after Global Exec)

(Available after Global Exec)

-1 If there is a.'copy" schedule it follows

this

6_ The final table needed is the Buffer Table. This is where SIFT holds

information about active buffers, etc. (A buffer is essentially a broadcast

variable). There should be one entry in the buffer table for each of the

variables for which idents have been assigned. The entries should appear in

the order in which the idents were assigned. The macro BUF has been

defined to take one parameter, the ident assigned to a variable. For our

NUL BUF 0 0 UN-NAMED

BUF ERRER 1

BUF GEREC 2

BUF GEMEM 3

example:
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BUF X 4

BUF Y 5

BUF Z 6

These tables must appear in a known location in memory, in order for SIFT

to find them. In SIFTDEC.REQ the constants TLOC, BLOC, SLOC, and

ILOC define where the compiled version of the operating system expects to

find the task, buffer, schedule, and buffer information tables. Constants of

similar names are defined in SIFTTA.BDX, and should reference the same

locations. See SIFTTA.BDX. for an illustrative case that handles the current

guidance and control tasks.
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